
Indirect Augmented Reality Browser for GIS Data

Patrick Skinner*

University of Otago

Jonathan Ventura†

University of Colorado

Colorado Springs

Stefanie Zollmann‡

University of Otago

Figure 1: Indirect Augmented Reality used for exploring geographic data in urban settings. Left and Middle) Labels aligned with

building faces. Right) Visualisation of point features using a shadow highlight on the ground.

ABSTRACT

In Augmented Reality applications, user experience is highly depen-
dent on the accuracy of registration between digital content and the
real world. Errors in tracking and registration can arise due to inac-
curacy of sensors or challenging conditions such as urban canyon
effects or magnetic distortions. Indirect augmented reality is an ap-
proach that avoid these issues by using precaptured and preregistered
images instead of a live video feed. However, indirect augmented re-
ality highly depends on the availability of those preregistered images.
In particular, when being used for browsing geographic information,
it is important to access data in an omnipresent way.

In this work, we propose an Indirect Augmented Reality browser
that aims to address these availability problems by combining in-
direct Augmented Reality with crowd sourced precaptured street
level imagery with geospatial data. We demonstrate how our indirect
augmented reality browser annotates buildings and landmarks in the
users’ environment and investigate the feasibility by analysing the
performance of such an approach. In addition, we investigate issues
of visibility and legibility when labelling the environment.

Index Terms: Human-centered computing—Visualization—Visu-
alization application domains—Geographic visualization; Human-
centered computing—Human computer interaction (HCI)— Interac-
tion paradigms—Mixed / augmented reality

1 INTRODUCTION

The quality of Augmented Reality (AR) applications is reliant on
the accuracy of alignment between real and virtual content. The
quality of sensors found in modern mobile devices is often not
sufficient when trying to register virtual content with a live video
feed. In particular, external influences such as the urban canyon
effect can create large offsets when estimating the position in urban
environments, also large urban structures can influence the accuracy
of magnetic sensors. Indirect Augmented Reality avoids these issues
by aligning the virtual content with precaptured images [12]. While
the real world content is no longer live the increase in registration
accuracy can provide an overall better experience for the user.

*e-mail: patrickskinner@outlook.com
†e-mail: jventura@uccs.edu
‡e-mail: stefanie.zollmann@otago.ac.nz

However, the advantages of Indirect AR come with a set of prereq-
uisites. The main challenge is that preregistered images from a street
level perspective have to be available close to the user’s position in
order to provide a good user experience [12]. This is in particular a
challenge when using IAR to explore geographic information that
is available in an omnipresent way driven by the growth of public
domain geographic information systems (GIS).

While previous work investigated the user experience of Indirect
AR systems [12] in particular in terms of how well users can localise
themselves, so far there is no work on how to provide Indirect
AR in an omnipresent way. In this work we address this gap by
combining crowd sourced street view data and open source GIS
data in an Indirect AR browser (IARB) for exploring GIS data.The
proposed system allows us to create situated visualisation for all
locations where crowd sourced street view data is available and
making use of Indirect AR to overlay panoramic images with 3D
annotations labelling buildings and points of interest in the scene.
Situated Visualisation is a term first used by White and Feiner [11] to
describe an AR visualisation that is both “related to and displayed in
it’s environment”. In our application we want to provide annotation
of the user’s surrounding environment to aid pedestrian navigation
and sightseeing. Our application is browser based and designed
to run on modern mobile phones and tablets that support WebGL.
The use of these openly accessible and editable data sources also
provides us the benefit of being easily able to add and modify both
real and virtual content for use in our system. Kurkovsky et al. [6]
noted that one of the issues with augmented reality systems of this
kind was the difficulty of modifying and adding new virtual content.
This is due to the fact that the virtual content often needs to be
created and tailored specifically for the real environment.

2 BACKGROUND

The performance and user experience of Indirect AR in comparison
to traditional AR has been the topic of several research papers,
focusing on the viability of Indirect AR in comparison to traditional
AR and the shortcomings specific to Indirect AR.

Registration Accuracy Indirect AR is used to provide an in-
crease in registration accuracy in comparison to traditional AR using
a live video feed. Wither et al. [12] quantified the effect of orienta-
tion when annotating buildings in panoramas. Alignment with an
object at 20 meters from the camera will be out by 3.75 meters with
10 degrees of orientation error, which they claim is within expected
error for the sensors found on mobile devices. With indirect AR this
orientation error can be removed almost entirely, depending on the
quality of the images and the accuracy of the data we have about



the image and the real world environment. Traditional AR can also
come with the problem of sensor data lagging behind the updating
video feed, leading to misalignment and jitter as the user rotates the
camera. This problem is avoided by the use of indirect AR, since
the real and virtual content is aligned once and does not need to be
realigned as the user pans the camera around the scene.

Spatial Inconsistencies One of the main problems with Indi-
rect AR is the difference between the user’s location and the location
of the camera in the image they are shown. Wither et al. [12] tested
users’ ability to locate a highlighted building when given an image
of that building from a different location, to test the effect of these
spatial inconsistencies on user experience. They ran these tests in
a variety of conditions, the main variation being the distance of the
camera to users location, and the angle of the camera to the buildings
facade. They found that increasing the distance between the image
and the user increased the time it took for the user to locate the
building in a linear fashion. In our work the distance between the
user and the centre of our virtual scene is dependent on the density
of images in an area. In order to provide Indirect AR in a large
variety of places we decided to use he crowd-sourced street level
imaging service Mapillary1. However spatial inconsistencies can be
caused by the time taken to update our virtual scene in response to
changes in the user’s real world position. The time taken to process
and construct a new virtual scene needs to be minimised to reduce
these inconsistencies.

Temporal Inconsistencies Okura et al. [9] studied how the
user experience was effected by the difference in time between their
use of indirect AR and when the image they are displayed was cap-
tured. The changes in the environment caused by the passing of time
are referred to as temporal inconsistencies. These inconsistencies
occur at a variety of timescales. The smallest timescale is the issue
of moving objects in a scene, such as the presence and position of
people in the real world and the image. The next timescale is the
issue of varying time of day. Lighting and weather conditions can
vary even by the hour, creating discrepancies between the image
and the real world. The largest timescale is variations in season, the
same area can appear vastly different between summer and winter.

Okura et al. [9] conducted a user study to determine how these
different inconsistencies affect the experience for the end user. Their
study found that temporal inconsistencies have a greater impact on
the user experience than spatial inconsistencies. Using crowd-source
image data sources allows for the continuous update of images
if there are enough users contributing to the database. However,
it comes with the disadvantage that we have no control over the
temporal inconsistencies within the data.

View Management The placement of information for clarity
and legibility is one of the problems that needs to be addressed when
visualising geographic data within an Indirect AR browser. View
management is the layout and representation of digital information
to ensure visibility and legibility. There have been many papers
discussing methods of ensuring visibility when labelling objects in
augmented reality. Shibata et al. [10] proposed methods of address-
ing overlapping labels attached to objects, using a priority system to
decide which of the labels should be moved to a new location. They
also discussed the repositioning of labels that were partially out of
frame. The techniques discussed in this paper were designed for
simple environments with few objects and would not necessarily be
applicable to a large outdoor scene due to the reliance on accurate
knowledge of the scene geometry.

Computer vision techniques can be used to make up for the lack
of knowledge about the real environment. Grasset et al. [4] used an
image-based approach for the placement of 2D annotations. This
approach combined edge detection with a saliency map to create

1https://www.mapillary.com/

Figure 2: Overview of IARB infrastructure.

a map of the most important parts of the image. Once this map is
created their ”layout solver” can then position the labels in away
that avoids occluding these important sections of the image while
also maintaining a clear relationship between the annotation and the
corresponding real world object.

Bell et al. [1] devised a view management method for annotating
buildings with in a fully 3D environment. However their method
involves using a 2D projection of the 3D scene to position the labels,
rather than positioning the label in 3D space. Image based techniques
can be used to retrieve geometric information from an image which
can then be used to position labels in relation to the world geometry.
Langlotz et al. [7] used computer vision techniques to create a
surface map from an image, allowing them to align labels with
suitable planes in the scene.

In our Indirect AR browser, view management is done using a
corse 3D representation of the scene. We use this 3D representation
to determine which buildings are within the users view and select
the face of each visible building that is most suitable for displaying
a label. This is an extension of the work presented by Zollmann
et al. [14] to address presentation issues such as the visibility and
information clutter when annotating environments in AR. They used
GIS data from OpenStreetMap to create a 3D scene and used the
information provided by this scene to implement dynamic label
placement and occlusion culling.

3 IMPLEMENTATION

Our approach integrates crowd-sourced street level imagery and GIS
data with an indirect AR browser. For this purpose, we implemented
a client-server infrastructure. As shown in Figure 2, we run our
web-based indirect AR browser on the client side. The indirect AR
browser accesses data from two different data sources, 1) crowd-
sourced panoramic street level imagery from the Mapillary API and
2) GIS data served by a server application.

3.1 Web-based indirect AR browser

We implemented the Indirect AR browser as a browser based
Javascript application using the Three.js2 graphics library to dis-
play 3D WebGL3 content. By using WebGL we provide platform
independence and provide an application that is compatible with any
modern web browser on desktop or mobile.

The basis of our Indirect AR browser is the rendering of
panoramic images in the user’s perspective. For this purpose, we

2https://threejs.org/
3https://www.khronos.org/webgl/



use an equirectangular projection to map the 360 degree photo to the
inside of a sphere. We place a camera at the centre of the sphere and
allow the user to rotate it freely with mouse or touchscreen input,
allowing the user to pan freely around the entire image.

The street-level images that we use are retrieved from Mapillary,
which is an openly accessible street level imaging service. Users
can capture and upload image data to Mapillary by connecting a 360
degree camera to their smartphone or tablet and using Mapillary’s
iOS/Android application. Mapillary offered a wide variety of exist-
ing images for us to test our application with, as well as allowing us
to easily upload our own images for testing in a local environment.

Mapillary provides access to their images through their API. To
query image data, we make a query to their API passing a lati-
tude/longitude pair, a radius, and the maximum number of image
features we want to retrieve. The API request returns a set of image
features. Each image feature is a JSON object that contains some
metadata about the image and the unique key which can be used
to retrieve the image file itself. When we create the Indirect AR
content for a certain location, we request the 10 closest images to our
location and retrieve the closest image that is tagged as a panorama
in the metadata.

The client-side web application is hosted on a local Apache server
for development, and deployed through Gitlab for testing on other
devices.

3.2 Backend Infrastructure

The web application is supported by a series of backing infrastruc-
ture. We store the 2D map information provided by Open Street
Map (OSM) in a Postgres4 database. OSM allows developers to
export their map data for their own local storage and use. We use the
GIS software QGIS5 to convert the exported data into shapefiles, a
standard vector formation for geographic information objects. These
shapefiles represent buildings as polygons with a set of associated
metadata fields. Postgres includes tools to convert these shapefiles
into PSQL objects to be stored in our database.

The database makes use of PostGIS6, an open source extension
that provides support for geospatial objects. PostGIS provides func-
tionality that allows us to query for objects based on their location.
This allows us to retrieve a subset of our map data by querying for
objects within a set radius of a given coordinate pair, allowing us to
retrieve the buildings surrounding the user.

The browser has access to the database through a server side
Node.js application. The Node.js application accepts HTTP requests
from the application and converts them to PSQL queries, the results
of these queries are returned to the application as JSON objects. The
objects stored in our database are using the World Geodetic System
1984 (WGS84) coordinate system, which is a global coordinate
system with the origin at the Earths centre of mass. We convert these
coordinates to a local coordinate system (East, North, Up) to be used
in our Indirect AR scene.

The database and Node.js application are running on a local
server.

4 DATA PROCESSING

The data served by the backend infrastructure requires a few pro-
cessing steps before it can be used in the Indirect AR Browser.

4.1 Integration of OpenStreetMap Data

We store the 2D map data exported from OpenStreetMap in a Post-
gres database. We can query the database from the browser using
HTTP requests to the serverside Node.js application described in
section 3.2. Using the user’s latitude and longitude as parameters,

4https://www.postgresql.org/
5http://www.qgis.org
6http://postgis.net

we make a request to server. The server then returns the details of
the all the buildings and point features within a 100 meter radius of
the user.

Since the building outlines are stored as 2D vectors in the database
we can easily recreate them as 2D polygons in Three.js. As the OSM
data is stored using the WGS84 coordinate system we must then
convert them into a local coordinate system before we can place
these polygons in our scene. We can then take these 2D building
outlines and extrude them upwards to create sparse 3D models of
the buildings. These models can be used to position our labels in the
scene once we align them with the buildings in the image.

4.2 Alignment of 3D Content

One of the key advantages of indirect augmented reality is that we
can align our real and virtual content without relying on computer
vision techniques. Instead we rely on the information we already
have about our real and virtual environments, creating a mapping
between the two. Each of the images we retrieve from Mapillary
includes the latitude and longitude reported by the camera, along
with an angle measuring the cameras rotation from north. OSM
provides the coordinates for each object retrieved. We place our
virtual camera at the origin point of our scene and then treat the
origin as having the latitude and longitude of the retrieved image.
This allows us to position the buildings in the virtual scene based on
their location relative to the real camera.

Figure 3: Correct alignment between the 3D content and the indirect

AR scene.

The next step is ensuring the correct rotation around the vertical
axis to properly align our real and virtual buildings. We use the
camera angle found in the images metadata to apply a rotation
around the vertical axis and align north in the image with north
in our map data (Figure 3). Provided the metadata is sufficiently
accurate this should provide a matching close enough to not produce
any recognisable alignment error.

There are three types of error encountered in the current im-
plementation of this alignment method. The first occurs due to
inaccuracy in the camera angle measurement. This results in an
incorrect rotation around the y-axis. In one of the image sets we
used for testing, the images were captured using a camera mounted
to a moving vehicle, and this type of error was found in images
taken as the vehicle carrying the camera turned a corner. This type
of error is entirely dependent on the quality of the data provided by
Mapillary. It is worth noting Mapillary allows users to manually
change the camera angle for any photo.

The second type of error occurs when the camera was not level
as it captured the image, resulting in the scene appearing to be
rotated by some amount of pitch and roll. Buildings in the image
appearing to be slanted and lines that should be perfectly vertical or
horizontal appear angled. We cannot account for this error creating
a misalignment with our virtual content. Mapillary does not provide
functionality to let users adjust the rotation of an image around



these axes, so this type of error is commonly found with images
captured using a handheld camera. Figure 4 shows an alignment
error caused by a combination of camera tilt and error in the camera
angle measurement.

The final type of alignment error is due to the fact we do not ac-
count for elevation differences in the environment. All our buildings
are assumed to be sitting on a flat plane meaning all our buildings are
at the same height, resulting in our virtual buildings appearing above
or below the real buildings in scenes with significant differences in
elevation between buildings. The incorporation of elevation data
from another data source could be a possible solution in future work.

Figure 4: Alignment error due to camera tilt and inaccurate camera

angle.

5 VISUALISATION

After accessing and aligning the data, the next step is the visualisa-
tion of the GIS data in the Indirect AR Browser. For this purpose,
we investigated different ways of how to visualise the different data.

5.1 Label Visualisation

We place our labels dynamically in the scene to ensure maximum
visibility and legibility. We make use of the coarse 3D building
geometry that we have created from the building outlines provided by
the GIS data. The coarse 3D building geometry in combination with
the user’s position allows us to place labels that are clearly within
the view of our virtual camera. The main idea behind our alignment
approach is that for each building in the user’s view, we want to find
the face that is most visible to the user. In addition we position a 3D
text label parallel to this selected building face to give the effect that
the label is anchored to the wall of the building as shown in Figure
1, Left and Middle. This effect helps to make up for the absence
of depth queues in our scene, helps users understand how the label
is positioned spatially in relation to the real environment [13], and
provides a clear visual relationship between the building and the
annotation [8].

We devised a method of selecting the best candidate face of each
building in the scene. First we want to check whether the face is
occluded by another object in the scene. We make use of a raycasting
operation to check whether a face is obscured by another building.
This involves casting a ray from our camera to the centre of the face,
and checking if the ray is intercepted by any other objects in the
scene. Any face that is occluded is not a suitable candidate for label
placement.

We also consider the angle of the face to the camera. If the label
is aligned with a face that is at too sharp an angle to the camera the
text will become illegible as shown in Figure 5. We can measure
the angle between the face and the ray we cast previously. The
closer this angle is to 90 degrees the more legible the text will be.
At 90 degrees the text is completely flat to the camera, providing
maximum legibility. By using a set threshold of approx. 60 degree,
we avoid that building faces with a low legibility will be selected.

Figure 5: The right label is less legible due to the angle.

The width of the face is also taken in to consideration. A face that
is too narrow will not provide adequate room to position a label in
convincing fashion. Faces that are narrower than a defined threshold
of 2 meters are simply ignored and not considered to be candidate
faces.

While we do make use of the building:levels tag in the OSM data
to estimate the height of each building we simply place labels at eye
level. Future iterations of the application could involve adjusting
label heights the user pans their view up and down, but the majority
of the time the user will be viewing the scene at eye level.

5.2 Visualisation of Point Features

Point features in OSM are objects of interest that are stored as a
single node, with a single latitude/longitude pair. Point features
include a vast variety of objects, including bus stops, restrooms
and landmarks such as statues. In our test area the density of point
features is so high that attempting to display all of the point features
within a users line of sight would result in a completely illegible
mass of annotations. This problem is easily solved by simply allow-
ing users to filter which type of point features they want visualised
and adjust the database queries based on these filters, this is similar
to the knowledge based filter proposed by Feiner et al. [2] where the
information displayed is based on the users current task. For our
application we have simply limited the features we have exported
from OSM, as we just want to investigate how they can be repre-
sented in a 3D environment. For testing we chose to create markers
for bus stops, as they are suitably common in our test area and are
positioned a reasonable distance from each other.

We first decided to mark point features using a floating sphere
with an annotation overhead. Since these annotations would always
be facing towards the viewer we had no need to use 3D text, as
we did with our building labels. We chose to use to simple 2D
billboard style annotations for our point features. Multiple studies
into nability in 3D environments [3, 5] found this was the most
commonly used way to integrate text over a 3D scene to provide
optimal readability in conditions negatively affected by background
texture and illumination.

Once we integrated point features into our scene we found the
lack of any depth queues made it impossible to discern where the
marker was positioned in 3D space. We can discern depth with our
building labels as they are positioned to look like they are attached
to real objects in the image [13]. We provide a similar effect with
our point features by finding a way to connect them to our ground
plane. We achieved this by drawing simple shadows directly below
our markers, at the level of our virtual ground plane. This provides
the extra depth information needed for us to identify where the
marker sits relative to the objects in our image. These shadows
are not always ideal. They can be difficult to spot against dark or
noisy backgrounds, and the user will have some expectation about



how shadows should look or be positioned based on the lighting
conditions in the image. In Figure 1, Right the shadow below the
left label blends into the real shadow in the image, making it harder
to discern depth.

6 PERFORMANCE ANALYSIS

One of the biggest concerns for the Indirect AR Browser was the
time taken to load a new image and create the corresponding 3D
content (such as 3D buildings and annotations), especially because
we were targeting less powerful mobile devices. Our performance
is tied to how we construct 3D content, but also to the backing
infrastructure we provide and the APIs we rely on. For testing we
used an Apple iMac with an Intel Core 2 Duo clocked at 3.1GHz
and 8GB of RAM and an Apple iPad 3 with a 1GHz dual-core ARM
CPU and 1GB of RAM for the mobile experience.

6.1 Data Retrieval

In the Indirect AR Browser when moving to a new location, we
need to retrieve data from three different sources. First we have to
query the Mapillary API to retrieve the image feature closest to our
location. Second we need to load that image from the Mapillary
server. Finally we query our database to retrieve GIS data for the
area surrounding our position.

The time taken to retrieve the image features through Mapillary’s
API remained fairly constant, with a average time of 680 millisec-
onds when testing on a desktop PC. When testing on an iPad we
found the average time taken increased to 1633 milliseconds. It is
worth noting that the desktop PC was using a wired Internet connec-
tion while the iPad was connected over a local wireless network.

The images provided by Mapillary are stored on an Amazon
Cloudfront server. We use the image key provided as part of the
image feature to construct a Cloudfront URL and retrieve our image.
We passed the image URL to the Three.js TextureLoader and mea-
sured the time taken for that function to complete. We recorded an
average time taken of 4300ms on our desktop PC and an average of
3900ms when using the iPad. These times were highly variable, with
the load times on the desktop PC ranged from 3003 milliseconds to
a maximum of 6302 milliseconds.

The PostGIS database extension allow us to query for all the build-
ings and point features within a set radius of our new location. The
number of buildings we retrieve affects the time taken to reconstruct
our scene. After testing a variety of different settings we settled on a
100 meter radius as a balance between performance and retrieving
enough buildings to adequately annotate a scene. Past 100m meters
the extra buildings are too distant to be effectively labelled or are
almost entirely occluded by closer buildings.

6.2 Content Construction

Once we have retrieved a set of buildings from the database we
convert their coordinates into a local coordinate system so we can
position them in relation to our user’s position and create 3D ge-
ometry. We then apply our discussed method for selecting the best
candidate face for labelling by iterating over each face in the scene.
To analyse the performance of our scene construction we measure
the time taken to create the scene and graph it against the number of
faces or the number of buildings in our scene. The number of faces
provides us with a measure of geometric complexity for the scene,
while the number of buildings lets us know how many objects need
to be retrieved from the database and converted into geometry.

When using a fixed retrieval radius of 100 meters and retriev-
ing images at random from our test set we found the variation in
building density had no effect on the time taken. This is due to the
fact most of the faces fail to pass the first check of our selection
function and are quickly ignored as possible candidates. We found a
noticeable difference when we increased the retrieval radius from
100m to 300m, with the scene construction taking on average 450

milliseconds longer. However any increase beyond 100 meters does
not provide any benefit to the user, as buildings at this distance are
too far from the user to be labelled clearly. Figure 6 shows the
average time for each load over 30 trials, with the average total load
time being 6361 milliseconds.

API	Calls Image	Load Scene	Construction
0

1000

2000

3000

4000

5000

Av
er
ag
e	
Ti
m
e	
(M

ill
ise

co
nd
s)

Average	load	times	over	30	trials.

Figure 6: Average load times as we select random areas from our test

set.

6.3 Runtime Performance

To test the performance to our application we set the camera to
constantly rotate, forcing the renderer to update constantly with a
maximum frame rate of 60 frames per second. We tested perfor-
mance across multiple browsers and on both a desktop PC and a 3rd
generation iPad. Table 1 shows the average frame rate across the
browsers using the same scene with 5 labelled buildings.

Browser Resolution Average frame rate
Firefox 1920x971 30 FPS
Firefox 1920x1080 30 FPS
Chrome 1920x974 45 FPS
Chrome 1920x1080 60 FPS
Safari 1920x1019 60 FPS

Safari (iPad) 980x1225 60 FPS
Table 1: Performance measurements.

Performance in Firefox was the poorest of the browsers we tested,
with a constant 30 FPS in both windowed and fullscreen modes.
Chrome provided a constant 60 FPS in fullscreen mode, but when
displaying the application in a window the frame rate was highly
variable, with an average of 45 FPS. The variance in frame rate
resulted in panning around the scene appearing choppy. Safari
offered the best performance overall, providing a constant 60 FPS
across both mobile and desktop versions, fullscreen and windowed.

6.4 Discussion

For our application to be usable in real world conditions the time
taken to retrieve and new image and construct the new scene needs
to be low enough to provide a sufficient update rate as the user
moves around the world. If the application takes too long to update
as the user changes position the application can seem unresponsive
and the issue of spatial inconsistency arises, leading to a poor user
experience. This time requirement is tied to how often we choose
to update the scene. We request the user’s GPS coordinates at fixed
intervals and check the distance they’ve moved from the centre of
the last 3D scene we constructed. If this distance is greater than
some set threshold we request that the scene is updated with a new
image.

While the time taken to construct the 3D scene and the time taken
to retrieve an image feature from Mapillary are within acceptable



bounds, the time taken to load an image takes the majority of time,
as seen in Figure 6. While we have not conducted any form of
user testing so far, we believe the improvements in load times will
positively affect the user experience.

The application runs at an acceptable frame rate on all the devices
we tested, although Safari was the only browser to provide a full 60
FPS. In Firefox and Chrome (when not in fullscreen) the rotation of
the camera did appear choppier than the frame rate would suggest,
likely due to inconsistencies in frame timing within the space of a
second. Considering the low power of the devices we tested on we
consider the performance of our application to be acceptable.

7 CONCLUSIONS AND FUTURE WORK

This work proposes an indirect augmented reality approach to ad-
dress several issues with situated visualisation applications, includ-
ing the limited understanding the real world environment and issues
with visibility and legibility of data. Our application functions well
under what we consider to be ideal environmental conditions. This
includes using images that are taken under ideal conditions, having
accurate metadata about the image, and having accurate GIS data
for the area.

Our alignment method relies heavily on the accuracy of the re-
ported compass angle and latitude/longitude. Since the used provider
for street level imagery (Mapillary) offers no way for users to man-
ually adjust the rotation of the image, except around the vertical
axis, correction for the pitch and roll of the camera can only be done
within our application. Future work could involve using an image
based approach to adjust for this rotation. This would likely involve
using edge detection techniques to produce an edge map where the
outlines of the pictured buildings are clearly defined, we could then
find the rotation that best matches the edges of our virtual buildings
with those in the image.

We are reliant on the quality of the GIS data provided by Open-
StreetMap. When a building lacks a name tag in its metadata we
default to using the buildings address as the label, but this informa-
tion is also missing from some buildings in our test area. To produce
a fully annotated scene we require the buildings in the area to be
adequately tagged in OSM.

The final requirement for an ideal environment is the lack of
elevation changes in the scene. As discussed our approach assumes
all the buildings in the scene are sitting on a flat plane. This means
that if we use an image where the buildings sit on an incline our
virtual content will not match the elevation of the real buildings.
Future work could include investigating the use of a digital elevation
model to adjust the elevation of each building in our scene, however
it is unclear whether the availability and accuracy of this data is
suitable for our purpose.

While our application does address the issues we outlined, fur-
ther work could be done to produce a more robust application that
functions ideally under a wider range of conditions.

Our label alignment work could be further improved by combin-
ing our use of GIS data with an image-based approach. The image
based techniques discussed by Grasset et al. [4] can be applied over
our 360 degree image to find areas of the image that are suitable for
labelling. Significant work would be required to combine both of
these approaches, as one operates exclusively on the image while
the other operates exclusively on our 3D scene.

Further work can also be done to dynamically adjust the position
of labels as the user pans around our scene. Our program positions
each label when a new image is loaded and the labels remain static as
the user pans around the image. If we reposition labels dynamically
we can deal with labels that are partially out of frame, or labels that
are out of frame entirely while their associated building is still in
view of the camera.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. 1464420.

REFERENCES

[1] B. Bell, S. Feiner, and T. Höllerer. View management for virtual and
augmented reality. In Proceedings of the 14th annual ACM symposium

on User interface software and technology - UIST ’01, 2001. doi: 10.
1145/502348.502363

[2] S. Feiner, B. Macintyre, and D. Seligmann. Knowledge-based aug-
mented reality. Communications of the ACM, 1993. doi: 10.1145/
159544.159587

[3] J. Gabbard, J. Swan, D. Hix, R. Schulman, J. Lucas, and D. Gupta.
An empirical user-based study of text drawing styles and outdoor
background textures for augmented reality. In IEEE Proceedings. VR

2005. Virtual Reality, 2005., pp. 11–317. IEEE. doi: 10.1109/VR.2005.
1492748

[4] R. Grasset, T. Langlotz, D. Kalkofen, M. Tatzgern, and D. Schmalstieg.
Image-driven view management for augmented reality browsers. In
ISMAR 2012 - 11th IEEE International Symposium on Mixed and

Augmented Reality 2012, Science and Technology Papers, 2012. doi:
10.1109/ISMAR.2012.6402555

[5] J. Jankowski and K. Samp. Integrating Text with Video and 3D Graph-
ics: The Effects of Text Drawing Styles on Text Readability. In Pro-

ceedings of the 28th international conference on Human factors in

computing systems, 2010. doi: 10.1145/1753326.1753524
[6] S. Kurkovsky, R. Koshy, V. Novak, and P. Szul. Current issues in

handheld augmented reality. In International Conference on Commu-

nications and Information Technology - Proceedings, 2012. doi: 10.
1109/ICCITechnol.2012.6285844

[7] T. Langlotz, T. Nguyen, D. Schmalstieg, and R. Grasset. Next-
generation augmented reality browsers: Rich, seamless, and adaptive.
Proceedings of the IEEE, 2014. doi: 10.1109/JPROC.2013.2294255

[8] S. Maass and J. Dollner. Dynamic Annotation of Interactive Envi-
ronments using Object-Integrated Billboards. In 14th International

Conference in Central Europe on Computer Graphics Visualization

and Computer Vision WSCG, 2006.
[9] F. Okura, T. Akaguma, T. Sato, and N. Yokoya. Addressing temporal

inconsistency in indirect augmented reality, 2016. doi: 10.1007/s11042
-015-3222-0

[10] F. Shibata, H. Nakamoto, R. Sasaki, A. Kimura, and H. Tamura. A View
Management Method for Mobile Mixed Reality Systems. EGVE’08

Proceedings of the 14th Eurographics conference on Virtual Environ-

ments, 2008. doi: 10.2312/EGVE/EGVE08/017-024
[11] S. White and S. Feiner. SiteLens: Situated Visualization Techniques

for Urban Site Visits. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, CHI ’09, pp. 1117–1120. ACM,
New York, NY, USA, 2009. doi: 10.1145/1518701.1518871

[12] J. Wither, Y.-T. Tsai, and R. Azuma. Indirect augmented reality. Com-

puters & Graphics, 35(4):810–822, 2011. doi: 10.1016/j.cag.2011.04.
010

[13] S. Zollmann, C. Hoppe, T. Langlotz, and G. Reitmayr. FlyAR: Aug-
mented Reality Supported Micro Aerial Vehicle Navigation. IEEE

Transactions on Visualization and Computer Graphics, 2014.
[14] S. Zollmann, C. Poglitsch, and J. Ventura. VISGIS: Dynamic situated

visualization for geographic information systems. In International

Conference Image and Vision Computing New Zealand, 2016. doi: 10.
1109/IVCNZ.2016.7804440


	Introduction
	Background
	Implementation
	Web-based indirect AR browser
	Backend Infrastructure

	Data Processing
	Integration of OpenStreetMap Data
	Alignment of 3D Content

	Visualisation
	Label Visualisation
	Visualisation of Point Features

	Performance Analysis
	Data Retrieval
	Content Construction
	Runtime Performance
	Discussion

	Conclusions and Future Work

