
SPLAT: Spherical Localization and Tracking in Large Spaces
Lewis Baker*

University of Otago
Jonathan Ventura†

California Polytechnic State
University

Stefanie Zollmann‡

University of Otago
Steven Mills§

University of Otago
Tobias Langlotz¶

University of Otago

Figure 1: We propose spherical structure-from-motion for localization and tracking in large spaces such as auditoriums, or scenic
outdoor locations. 3D points from the system are back-projected and color mapped by depth (blue near, red far).

ABSTRACT

When implementing an Augmented Reality (AR) interface, it is
essential to track camera motion in order to precisely register the
virtual overlay in the view of the user. However, unlike most indoor
AR scenarios, in many outdoor scenarios the user maintains a static
position performing mostly rotational movements. Simultaneous
Localization and Mapping (SLAM) methods typically used to solve
the tracking problem require significant translational camera motion
to perform reliably. The magnitude of the required translation is
proportional to the size of the scene, exacerbating this problem
in large environments such as open places or stadiums. In this
paper, we present an alternative SLAM method, which combines
spherical Structure-from-Motion and a robust 3D tracking method.
We compare our method to ORB SLAM2 in synthetic and real tests,
and show that our method can track more reliably in large spaces,
with simpler calculation due to the spherical motion constraint. We
discuss this issue in the context of implementing an AR interface
for live sport events in stadiums or other open environments, but
possible application scenarios for our technique go beyond and can
be applied to handheld AR in many outdoor environments.

Index Terms: Computing methodologies—Tracking—; Human-
centered computing—Mixed / augmented reality

1 INTRODUCTION

Driven by the availability of programming frameworks such as Vufo-
ria, ARKit, and ARCore, we have seen a wider adoption of handheld
and mobile Augmented Reality (AR) where mobile devices, typ-
ically mobile phones, provide an AR interface to the user. Most
applications focus on small indoor environments where digital ob-
jects are integrated into our physical environment. Examples include
digital enhancements of physical books or magazines, augmentation
of board games, Augmented Reality games, or previewing digital
furniture augmented within our physical environments. While these
environments can be handled well by most AR frameworks, large
and open environments still pose challenges and are consequently
less often targeted.

*e-mail: bakelew@gmail.com
†e-mail: jventu09@calpoly.edu
‡e-mail: stefanie@cs.otago.ac.nz
§e-mail: steven@cs.otago.ac.nz
¶e-mail: tobias.langlotz@otago.ac.nz

Key among these challenges is the precise tracking of a mobile
device’s location and orientation, which is a necessity for AR. When
in outdoor environments or large open areas (e.g. stadiums, large
spaces) users often have a fixed position, they are standing in place
or even seated, observing the scene or event from a single location.
Being fixed in one position means that there is insufficient parallax
for conventional Simultaneous Localization and Mapping (SLAM)
approaches. One approach is to use panoramic trackers [8, 34] to
address these issues. However the motion of the user’s device is not
purely rotational either, which is problematic for panoramic trackers,
which assume a perfect rotation centered around the camera.

We experienced these issues first hand when investigating using
an AR interface in a stadium environment [36] with the goal of
providing live sports spectators rich real-time visualizations and
overlays as they are used in sports broadcasting but this time using
an AR interface on a mobile device. However, being in one position
is not limited to the scenario where spectators are watching a game
or event within a stadium environment. An example where similar
usage patterns have been observed are many outdoor AR applications
utilizing mobile phones, in particular AR browsers on handheld
devices, where users have the tendency to stand in one position and
then rotate their device to explore the surroundings [18–20].

In this work, we address the problem of reliably tracking a camera
in the situation where users mainly perform rotational movements.
We observe that for a static user, their device is generally held
at arm’s length, so moves on a roughly spherical surface. How-
ever, instead of assuming a pure rotation around the camera center
(homography-based tracking) or unconstrained movement with a
large enough baseline (SLAM), we propose SPLAT, a SLAM sys-
tem based on spherical Structure-from-Motion (SfM) and 2D track-
ing [33], paired with a new spherical 3D absolute pose solution. Our
system is implemented as a keyframe based tracking and mapping
pipeline using ORB features, similar to ORB SLAM2 [24].

We show that this approach is more robust to restricted parallax
through experiments on synthetic data (where ground-truth motion
is available). We also demonstrate its effectiveness on real video
sequences captured in several large spaces, including a stadium
environment during a live sports event.

Our tracker is based on the work of Ventura [33] and extended in
the following ways:

• We integrate the SfM methods into a complete real-time simul-
taneous localization and tracking system suitable for use in
Augmented Reality

• We present a method for computing absolute pose with a spher-
ical constraint

• We evaluate the performance of our spherical tracking system
in various synthetic and real environments.

Our implementation is built from scratch, and loosely based on
ORB SLAM2 [24] with the following contributions:

• We apply spherical constraint to the initialization, tracking,
and bundle adjustment

• We present a unique Keyframe Sphere data structure which
replaces the need for a keyframe culling mechanism.

2 BACKGROUND

The problem of determining a camera’s pose within an environment
(localization) and updating it over time (tracking) has been studied
for a long time. In the context of AR, the dominant approaches are
Simultaneous Localization and Mapping (SLAM) and panoramic
tracking. We review these two approaches, highlighting their limita-
tions for the task of localization and tracking in large environments
with limited (but not negligible) translational movement.

We focus primarily on visual localization and mapping with RGB
cameras. Depth cameras (RGB-D sensors) are not common on mo-
bile devices, and when present have limited range. Inertial sensors
are likely to be used in practical applications, but are often combined
with visual tracking and localization to overcome sensor drift.

2.1 Simultaneous Localization and Mapping

Simultaneous Localization and Mapping (SLAM) is a tracking ap-
proach originating from robotics. A robot typically moves through
its working environment and while moving, the robot builds up a
spatial map of the environment which it uses for tracking and local-
ization [7]. While the original approaches often used direct range
sensors [7] or multiple cameras [5], later research focusing on AR
scenarios showed variations of SLAM approaches that work in real-
time using a single camera only (e.g. MonoSLAM [6], PTAM [17]).
Since then, many approaches for monocular SLAM systems have
been introduced that differ mainly in what kind of features are taken
or how they are matched. Examples include the use of invariant im-
age features (e.g. ORB SLAM2 [23, 24]), dense image registration
(e.g. LSD-SLAM [9]), objects as landmarks (e.g. SLAM++ [30]),
and the use of deep learning to estimate pose [16] or compact scene
representations [1].

However, despite the differences in feature handling and match-
ing (or the lack thereof [9]), most monocular visual SLAM systems
rely on the same basic concept which is to have a reasonable par-
allax at some stages (e.g. initialization) to compute correct depth
information. In our work we use ORB SLAM2, one of the most
widely used SLAM systems, to represent a general SLAM system.
ORB SLAM2 is a keyframe based SLAM system, meaning that a
sparse set of frames are chosen for map update, while the others are
used for pose tracking only. It is capable of tracking moving cameras
in a variety of environments, and mapping the environment. The
method supports loop closure when returning to previously mapped
areas, bundle adjustment of the computed map, and re-localization
to recover from tracking failure [23, 24].

While all these SLAM systems have shown potential for tracking
in various types of indoor and outdoor environments, they are unable
to perform reliably in very large spaces when the user’s camera
motion is small. This is a significant problem for AR in large open
spaces, such as a stadium, as their environment will be much larger
than the typical office or home that these systems perform well
in. Furthermore, live event spectators such as sport spectators will
often be constrained to a fixed position or seat, moving only small
distances throughout an event which causes initialization problems
due to the small baselines.

2.2 Panoramic Tracking
Tracking of purely rotational movements has also been considered
previously within the research community. While one can use in-
tegrated hardware sensors such as compass and gyroscopes, these
are in practice not reliable enough to deliver precise information
for tracking the rotation of a mobile device. One of the first works
for using vision information for optical tracking was presented by
Montiel and Davison [21]. Their approach of a visual compass
uses an Extended Kalman Filter formulation of the general track-
ing problem applied to purely rotational tracking [8]. Later works
such as Envisor [8] or Panoramic Mapping and Tracking [22, 34, 35]
provided different algorithms for the same problem by building a
panoramic map. The former optimizes the algorithm for using the
GPU to achieve real-time performance while the latter optimizes the
handling of the panoramic map and the feature matching to achieve
real-time performance on a mobile device. Common to all these
approaches is that they require purely rotational movements and a
violation of those (e.g. when not rotating around the camera centre)
will introduce errors and ultimately tracking failure.

Panoramic trackers assume that the camera’s motion is purely
rotational (or, less commonly in AR, that the scene is planar). Under
these circumstances the images of the scene are related by homo-
graphies, and so can be mapped to a sphere (or plane) [32]. This
approach has two main drawbacks for our application. The first
is that while the camera movement is largely rotational, there is a
translational element. This is introduced by the camera position
being usually offset, and the fact the the centre of rotation is not
the phones’ camera centre in particular when held an arms length
from the user. This translation element is restricted (i.e. to arms
reach), but may be large enough that the assumption of (nearly) pure
rotational motion is violated. The second is that the visualization
of the event may rely on a 3D interpretation of the scene, which
panoramic trackers do not provide. Rather than forming a 3D model,
panoramic trackers represent the scene as directional rays from the
viewer’s location.

Hybrid solutions also exist that combine panorama tracking and
SLAM. Pirchheim et al. [26] describe a method to track through
periods of rotational motion in a general SLAM system. However,
they assume that there is a sufficient translational movement at some
point in the sequence to create the map. Gauglitz et al. [12] introduce
a method for tracking through both general and rotational motions
but do not build and localize from a global map.

2.3 Limitations for Users in Large Open Environments
Augmented Reality applications often assume that the user is in a
relatively small enclosed space, such as an office or workshop [17],
or moves freely through a larger environment [27]. In both of
these cases, the motion of the user is a significant fraction of the
size of the scene, providing a good baseline for triangulation-based
reconstruction. Alternatively, the user might view distant objects
from a single view point [19]. In this case the motion of the user
is insignificant compared to the size of the scene and panoramic
tracking is viable. We are concerned with the intermediate case –
where the user’s motion is small, but not negligible, compared to the
distance to the scene.

This case arises in our application of Augmented Reality for
sports spectators, where a large stadium environment (on the order
of 100m) is combined with limited motion of the user’s device (on
the order of 1m). Treating the motion as pure rotation leads to an
angular error on the order of 0.5°, which corresponds to tens of
pixels error on a typical HD display. A similar situation arises when
a seated user with a head mounted display (translations on the order
of 0.1m) views a large indoor scene (on the order of 10m).

The case of a seated, or otherwise stationary user does, however,
offer some advantages. The key advantage for our purposes is that
the user will be likely returning to the same position multiple times,

and will quickly be able to scan and observe their entire environment.
This means that some of the key advantages of typical SLAM

systems, such as loop closure, and regular addition of new keyframes,
become less useful. A SLAM system that is constrained to spectator
type motion would need to keep track of fewer keyframes, and would
rarely need to perform loop closure procedures.

Apart from the focus on our specific use-case of live spectators in
a stadium, we believe the applicability of our approach goes further
including many AR applications that use handheld devices in outdoor
environments. As Grubert et al. showed, when using AR browsers or
related applications, stationary position and rotation-only movement
is the dominant movement pattern [14].

Figure 2: Different spherical movements captured by a mobile phone
user in a stadium environment (color coded for different paths). Front
(left) and Top view (right).

3 APPROACH—SPHERICAL SIMULTANEOUS LOCALIZA-
TION AND MAPPING

As we have seen, existing approaches use specific constraints, par-
allax, or pure rotation that are often violated in the real world. In
this work, we present a new approach of spherical localization and
tracking that has, so far, not been widely considered. By doing so we
address the problems that arise when using state-of-the art SLAM for
mostly pure rotational movements. Our system represents a SLAM
approach based on spherical Structure-from-Motion [33].

Contrary to existing solutions, our approach does not assume a
large parallax, fixed position, or pure rotational movement. Instead,
our approach uses a spherical constraint introduced by Ventura [33].
The spherical constraint relaxes the fixed position of a camera and
instead allows a position which is on the surface of a sphere, and
a viewing direction parallel to the sphere normal (Figure 2 shows
different near-spherical user movements).

This has several advantages that we want to explore. Firstly,
as already shown by Ventura, the spherical constraint allows us to
use a minimal representation of the camera pose based on three
rotation parameters which only requires three point correspondences
to compute the relative pose between two cameras in contrast to
using five correspondences in the case of unconstrained movements.
More importantly, we argue that this spherical constraint is a better
approximation of the user’s movement when stationary in a large
environment such as in our sports stadium scenario.

In his work, Ventura only investigated the spherical constraint
for offline 3D reconstruction but did not implement a full tracking
system or a real-time spherical SLAM approach. In the following
we present our implementation of a SLAM based system using this
spherical constraint while later evaluating its performance using
synthetic and realistic data, and comparing it against state-of-the-art
SLAM. As part of our solution, we also propose a method for com-
puting the absolute pose with two 3D-to-2D point correspondences
with a spherical constraint.

Our spherical SLAM system uses a new data structure to store
keyframes (Sect. 3.1) and, as with many SLAM systems, has three
distinct stages: Initialization (Sect. 3.2), Tracking (Sect. 3.3), and
Mapping (Sect. 3.4). Fig. 4 depicts an overview of the whole system.

3.1 The Keyframe Sphere

We propose a new method for subdividing the space of possible cam-
era poses which is tailored specifically to a spherically constrained
keyframe SLAM system. We compute N points evenly distributed
across the surface of a sphere using the method of [29]. These points
act as anchors for the keyframe selection, with the goal of achieving
an even distribution of keyframes. This kind of careful keyframe
selection can help a SLAM system in scalability and performance,
with N acting as an upper limit on the possible number of keyframes.

Through experimentation, we found good results with N = 1000
anchor points. We also set a threshold that requires that a new
keyframe’s camera centre must be within some small distance of an
anchor point. We set this distance threshold to be equal to 25% of
the distance between two neighboring anchors. Setting larger values
here can cause issues, such as two similar keyframes being assigned
to different neighboring anchor points.

3.2 Initialization

We perform an automatic initialization step before we can start
with the tracking. For our application scenario this would be a
valid assumption, since we can assume that users would scan part
of the area with their mobile devices. Our system automatically
initializes a map and begins tracking when enough spherical motion
has occurred, using the process described below.

Feature extraction and tracking Our feature extraction
method uses ORB features [28]. We extract 2,000 keypoints and de-
scriptors in the initial frame. To match keypoints between successive
frames, we find matches using a pyramidal KLT feature tracker [2].
At each frame, we use these 2D matches to make an estimate of the
current pose relative to the initial frame.

Relative pose estimation We assume that the camera moves
on a mostly circular path with a constant radius from the origin.
Also, we assume that the camera viewing direction is parallel to the
normal of the sphere that is given by this radius. These assumptions
allow to simplify the pose estimation. The camera pose can then
be described as: [R|t] where t = [0,0,−1]T , and the camera center
c =−RT t. We use the spherical relative pose estimation of Ventura
[33] in combination with Pre-emptive RANSAC to discard outlier
tracks [25], and to determine an estimate of the current pose.

Triangulating the initial map Using the relative pose estimate
from the previous step, we determine if the angular motion is great
enough as determined by our Keyframe Sphere structure. If the poses
of the start and end frame fall within the distance thresholds of two
different anchor points, we proceed with initialization. We then
extract features in the final initialization frame, and match them to
the initial frame using the KLT tracks. Finally, we use the matches
and relative pose to perform triangulation to compute the 3D points.

3.3 Tracking

After the map has been initialized with two keyframes, and the
3D points from triangulation, we use this data as input for our
tracking method. The tracking step can be described by the following
components:

Feature extraction and tracking The extraction of ORB fea-
tures is very similar to the extraction from the initialization step.
Again we extract 2,000 keypoints and descriptors in the initial frame.
We use KLT feature tracking [2] to keep track of matches from the
most recent reference frame, or keyframe. This simplifies feature
matching in the mapping thread when new map points must be
triangulated.

Figure 3: Example output of our system. Left: tracked features overlaid with the current input frame. Right: Tracked poses (blue) alongside,
occupied (red), and unoccupied (black) keyframe anchor points.

Initialization Tracking Mapping

Reference Frame
Tracking via KLT

Feature Extraction

Spherical Absolute
Pose (RANSAC)

Reference Frame
Creation

Feature Extraction

KLT Keypoint Tracking

Spherical Relative Pose
(RANSAC)

Initialize Keyframe
Sphere

Triangulation

Reference Frame
Matching

If keyframe anchor
is vacant

Bundle Adjustment

Triangulation

Update Keyframe
Sphere

Update
correspondences

Reference Frame

Figure 4: High level overview of our tracking and mapping system. The first component handles initializing a 3D map, and the Keyframe Sphere
before handing off to the tracking component. The tracking component tracks keypoints from the last reference frame, and creates new reference
frames when required by the Keyframe Sphere. The mapping thread updates the 3D-to-2D matches of the latest reference frame asynchronously,
triangulates new points, and updates the Keyframe Sphere.

3D-to-2D feature matching We next use the extracted ORB
features to obtain 3D-to-2D correspondences. We use the KLT tracks
to maintain references to 3D map points that were found in the last
reference frame. When the mapping thread finds new matches in the
reference frame, the tracking thread receives these asynchronously
via correspondences to the KLT tracks.

Absolute pose estimation To estimate the pose for each frame,
we use a novel Perspective-2-Point (P2P) method with a spherical
pose constraint within a pre-emptive RANSAC scheme to determine
the current pose, and an inlier set of matches [25]. Details of this
P2P solution are covered in Sect. 3.5.

Reference frames Once a frame is successfully tracked, we de-
cide whether or not it will become a reference frame. The reference
frame is updated when a tracked frame falls within the Keyframe
Sphere distance threshold of a new anchor point. When a reference
frame is created, the mapping thread matches its keypoints to all
neighboring keyframes, and merging the observations. This is equiv-
alent in some respects to loop closure when loops are small, and
drift is relatively small. Reference frames are essentially the result
of keyframe pre-processing, for keyframe creation. They may or
may not become keyframes as described in the following paragraph.

Keyframes A reference frame will become a keyframe if it’s
anchor point in the keyframe sphere is unoccupied. In this case,
the KLT tracks from the previous reference frame are triangulated,
and bundle adjustment takes place. Since the tracking thread is
acquiring many matches through KLT tracks to this frame, the new
map points are automatically assigned to the current tracked frame
as soon as they are ready. This allows new map points to be added
asynchronously.

3.4 Mapping
Once a frame has been tracked successfully, it is sent to the mapping
thread to use the newly visible feature points in the image to update
the map. The mapping thread has three main stages:

Guided matching When new keyframes are stored, the tracking
thread follows features from the latest reference frame using KLT
tracking as before. The mapping thread uses these results to guide
the matching of keypoints between these two frames.

Updating the map The previously computed matches are then
triangulated in a similar manner to the initialization phase. If more
than 50 map points were triangulated from the matches, then the
keyframe is considered successful, and is added to the Keyframe
Sphere data structure as described below.

Bundle adjustment In the mapping thread, after triangulation,
bundle adjustment takes place to optimize the 3D point locations,
and keyframe camera poses. To enforce a spherical constraint here,
we set the parameters for the camera translation to be fixed in the
optimization. Once this process is complete, we remove keyframe
references to outlier 3D points using the same reprojection threshold
we set in our tracking thread. We then update the positions of the
remaining points, and camera poses of the keyframes. We found
that running a small number of iterations (one to two) each time a
keyframe is added is a good way to keep map updates frequent. This
also allows for faster performance than full bundle adjustment as
used in [33] at the cost of some accuracy.

3.5 Spherical Perspective-2-Point Solution
One of the contributions of this work is a method for computing
absolute pose under the spherical constraint. This is a key component
of a tracking system which allows for computing the pose of a
camera relative to a pre-computed 3D map using correspondences
between the observed image points, and the 3D map point locations.
This is widely known as a Perspective-n-Point (PnP) problem. PnP
solvers are often used in SLAM systems to determine the pose of
the camera relative to the map. In the unconstrained case, solutions
require at least three 3D-to-2D correspondences to determine the
pose [10].

Previous work by Ventura [33] defines spherical motion as having
a fixed translation, causing the camera to remain on the surface of an
imaginary sphere. This section covers our solution to this problem
using 2 correspondences and a known translation vector t.

The 3D points Xw = {Xw
1 , ...,Xw

n }, and their corresponding ob-
servations xc = {xc

1, ...,x
c
n} are related by a known translation t,

unknown rotation R, and unknown scale factor λi:

RXi + t = λixi (1)

Since we assume that the camera motion is spherical, we can fix
t = [0,0,−1]T , so our objective is to compute R. Our approach is to
first compute the scale factors λi which can be used to unproject a
homogeneous 2D observation xc

i into a 3D point Xc
i in the camera

co-ordinate system. Finally, we can find R by aligning the two 3D
point sets using Horn’s method for absolute orientation [15].

We also know that the distances between each pair of 3D points
must be the same in both the world co-ordinate system, and the
unprojected (scaled) camera co-ordinate system. So we can produce
the following equations

||Xw
1 −Xw

3 ||
2−||λ1xc

1−λ3xc
3||

2 = 0 (2)

||Xw
2 −Xw

3 ||
2−||λ2xc

2−λ3xc
3||

2 = 0 (3)

We can also assume that our camera is facing outwards, with the
camera axis parallel to the normal of the sphere. This assumption can
give us one correspondence for free – that the world origin [0,0,0]T ,
located behind the camera, should always project to the center of the
image. So, let Xw

3 = [0,0,0]T , xc
3 = [0,0,1]T , and λ3 =−1.

Equations 2 and 3 can be solved for λ1 and λ2 respectively using
the quadratic formula, resulting in four solutions. Finally, R is
computed by applying Horn’s method to the two 3D point sets Xw

and Xc [15].

4 SYNTHETIC EXPERIMENTS

Our initial evaluation focuses on synthetic experiments with con-
trolled parameters in order to determine the theoretical limits of
SPLAT, and the other tracking algorithms. Brückner et. al. suggest
a framework for comparing relative pose estimation algorithms with
controlled 3D point data generated in a cuboid [4]. Our experiments
are similar in that we generate a 3D space of a known size and
structure. However, we generate points in a 3D sphere rather than a

Figure 5: Example of our synthetic video setup. The world texture is
projected onto a sphere with a variable radius (5 in this case), and a
camera (white) moves in a circle (orange) within this sphere.

cuboid, to have a finer level of control over the space size, and the
distance between the generated points and the simulated cameras.

4.1 Data preparation
We take a high resolution texture and map it to a sphere within a 3D
rendering software. To avoid unrealistic seams, the texture we use is
a high resolution equirectangular photograph of a church1 (Fig. 5).

Generating videos To simulate camera motion, we focus on
the simple case of a camera moving in a circular arc with a fixed
speed and radius. We run our experiment over 1,000 frames, (0.36◦
of rotation per frame), and an arc radius of 1 unit.

To determine how the tracking algorithms perform in spaces of
various sizes, we fix the circular arc radius of the camera, and its
movement and internal calibration parameters. We then vary the
radius of the textured world sphere at regular intervals ranging from
2 to 50. At each interval, we encode a lossless 30 fps video, resulting
in 49 videos which we use as input for the tracking systems.

Error evaluation Since we are interested in determining the
reliability of these systems, we look to evaluate a tracking rate, as
a measure of tracking robustness. In our experiment, we define
tracking rate as the ratio of the longest sequence of successfully
tracked frames with respect to the total number of frames input to
the system. We used this error metric (error metric A) to analyze the
suitability of three tracking algorithms.

Normalizing parameters All tracking systems we tested had
certain parameters which can influence when the system would
report a tracking failure. In all systems we set the number of detected
ORB features to 2,000, and the minimum number of 3D-to-2D
match inliers to 15. In both SPLAT and the Homography tracker,
we set the inlier reprojection threshold to 5.0 pixels.

4.2 Synthetic results
In our synthetic tests, we found that all three methods handled the
challenges of varying space sizes very differently. Our approach
was able to reliably track in all tested space sizes. Our results are
summarized in Fig. 6.

ORB SLAM2 Our results from this experiment showed that
ORB SLAM2 was able to track reliably with small space radii, but
as the space increased in size, tracking began to fail. Between radius
2 and 5, tracking was very reliable. Between 6 and 14, tracking was

1Original image captured by Jürgen Matern 2018, shared under the Cre-
ative Commons Attribution-Share Alike 4.0 International license.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

Tr
ac

ki
ng

 r
at

e

Space size

Tracking rate vs. Space size

SPLAT
ORB_SLAM2

Homography A
Homography B

Figure 6: Tracking rate of our spherical tracker (blue), ORB SLAM2 (red), and a homography-based tracker (with two metrics: yellow and orange)
on our synthetic video sequences with different 3D sphere radii.

sometimes reliable, but would occasionally lose track. And due to
the nature of the circular video sequences, there are no opportunities
for the algorithm to relocalize. From a space radius of 15 and higher,
ORB SLAM2 was usually able to initialize, but would lose tracking
nearly immediately, resulting in very low tracking rates.

Homography Tracking We also compared our system to a
simple homography tracking system which we base on a simple
panorama stitching pipeline2. We modified it to perform sequential
matching, and use the same number of ORB features as the other
algorithms. Since this method is essentially performing homography
estimation between sequential frames with no propagation of ex-
isting matches (through feature tracking), it performed very poorly
when using our tracking rate metric A described in Sect. 4.1 (yel-
low line, Fig. 6). We include another more forgiving tracking rate
metric B, which is the percentage of sequential frame-pairs where
homography estimation was successful (orange line, Fig. 6). In both
error metrics, the homography estimation was less reliable when the
space size was smaller.

SPLAT Our spherical SLAM method was able to track reliably
in all test cases. We found that with a small space radius, our
algorithm is somewhat sensitive to the frequency of the map updates
– for example, if the keyframe sphere has too few anchor points. We
chose 1,000 anchor points, as this produced around 70 keyframes
from a full circle, which is similar to ORB SLAM2. We also found
good results with as few as 250 and as many as 2,000 anchors, with
larger values producing more keyframes at the cost of performance.
When tracking in small spaces, small camera movements can result
in large disparity, making the movement appear faster as a result.
We do show, however that our method is much more reliable than
ORB SLAM2 in this scenario, and that homography-based tracking
can struggle with smaller space radii. In the next section, we test
our method on real data captured from a mobile device, in order
to determine how reliably we can track when the movement is not
perfectly spherical.

2https://opencv.org/release/opencv-3-4-3/

5 REAL DATA EXPERIMENTS

For our real life experiments, we captured a set of ten video se-
quences with different light conditions, and in environments of
various scales, including a large sport stadium. The data was cap-
tured with a OnePlus 6 smart phone at a framerate of at least 30Hz
and a resolution of 1920×1080.

5.1 Experimental method
During the capture, the mobile phone was rotated around the body
of the user at a length of the user’s arm. This constraint was not
enforced strictly, and all sequences were captured casually from
either a fixed seated or fixed standing location. In order to compare
our SLAM system to state-of-the-art, we run ORB SLAM2 in a
similar way to our system, configured with the same calibration
parameters and number of ORB features.

Since we have no ground truth pose or point data for the real
experiments, the experiments in Sect. 5.2 are presented using a
tracking rate defined by the states of either tracking or lost tracking.
Both systems are configured to avoid re-initialization when tracking
is lost, and will instead attempt to re-localize from the previously
initialized map. To measure our pose accuracy, we compare poses
output by our system to output from a RealSense T265 Tracking
Camera. This device is state-of-the-art hardware, purpose built for
real-time motion tracking. This is discussed in Sect. 5.3.

5.2 ORB SLAM2 Tracking Rate Comparison
In general, the experiments confirm our initial findings from the
synthetic experiments. In particular, that ORB SLAM2 has prob-
lems tracking in large spaces. The results from the experiments
are depicted in Fig. 7. We tested our method and ORB SLAM2 on
several video sequences in the manner described in Sect. 5.1.

ORB SLAM2 performed well in large spaces some of the time.
In tests Field, and Stadium-1, tracking was robust once initialized.
However, in Stadium-2, tracking was lost shortly after initialization.
Both of these sequences were taken from a sport spectator perspec-
tive within a live rugby game. This could suggest that tracking
success is dependent on a successful initialization in large spaces.

SPLAT tracked robustly in all of the sequences, with a slightly
delayed initialization in Stadium-1. A delayed initialization in our

Figure 7: Tracking timelines of ORB SLAM2 compared to our Spherical SLAM system across ten video sequences at 540p video resolution. Blue
represents a successfully tracked frame, red represents an untracked frame. We show the percentage of successfully tracked frames (metric B)
alongside each sequence.

system would usually mean that the triangulation resulted in some
points behind the camera. These initializations can be caused by
moving objects, such as other spectators, or insufficient parallax,
and are discarded.

In general, we found high tracking rates with our algorithm. This
is desirable for Augmented Reality applications, and would reduce
the amount of work needed to be done by a re-localization module.
A common use case of our method would be with full integration
into a global localization module, and perhaps registering to a prior
model of the environment. Such registration can be computationally
expensive, so maintaining robust tracking rate is important.

In some of the very large spaces, such as Stadium-1 and Stadium-
2, our method takes a little more time to initialize. But once initial-
ized, tracking is robust. The largest space in all of our test videos
was River-far, depicting a large building from across a river. This
case was able to initialize quickly with SPLAT, but did not perform
well with ORB SLAM2. Notably, ORB SLAM2 initialized more
quickly on River-close, which falls in line with the synthetic results,
where initialization was fast on smaller scenes.

5.3 RealSense Accuracy Comparison
To determine accuracy, and to see how well the spherical motion
constraint holds true to real AR user motion, we compared our pose
outputs to a RealSense T265 Tracking Camera. The RealSense
tracker provides a SLAM solution integrating stereo fisheye cameras
with inertial measurement. This provides us with reference trajecto-
ries independent of the video stream used to compute SPLAT and
ORB SLAM2 tracks, but cannot be considered absolute ‘ground
truth’ as the RealSense solution is subject to drift and other tracking
errors. This data was separate from Sect. 5.2, was captured from the
stadium stands, and models a spectator viewing a sports event and
tracking play on the pitch.

The trajectories from SPLAT and ORB SLAM2 were aligned
to the RealSense tracking path and compared using the TUM eval-
uation tools [31] which compute the absolute trajectory error and
relative pose error. The absolute trajectory error (ATE) is the aver-
age difference between two estimated locations at each time after
least-squares alignment with a rigid transform, while the relative
pose error (RPE) measures the difference in estimated motion of the
aligned trajectories over a short period (we use 6 frames, or 0.1s).
The RPE gives values for both translational and angular errors. The
RealSense reports translations in units of meters, which we adhere
to in our results. These results are shown in Table 1.

The ATE values indicate that ORB SLAM2 generally gives better
alignment to the RealSense data by a small margin, but the relative
pose over short periods is more accurately estimated by SPLAT,
with better estimation of both translation and orientation over short

time-frames (0.1 seconds). Statistical validation of these differences
needs to be dealt with carefully since the relative pose errors are
not independent of one another for overlapping time segments. To
overcome this we take sequential non-overlapping 0.1s (6 frame)
periods. Furthermore there are eight comparisons (translation and
pose for each sequence), so a Bonferroni correction is applied to our
significance threshold. Starting with a threshold of p = 0.05 yields a
corrected significance threshold of p = 0.00625. Two-tailed paired
t-tests then indicate a significant improvement in RPE for SPLAT
over ORB SLAM2 for both translation and rotation in the sequence
Spectator 1 and for rotation in Spectator 4. Translation in Spectator
3 is close to the corrected threshold (p = 0.0077). All other cases
have p−values larger than the uncorrected threshold.

The differences in ATE are more difficult to interpret, since the
ATE between SPLAT and ORB SLAM2 is generally smaller than
the ATE between either tracker and the reference (RealSense) path.
This could indicate some over-all drift in the RealSense tracking.
The short-term relative poses (as used in the RPE transformation)
should be more reliable due to the integration of inertial sensors in
the RealSense tracking. Despite these limitations, the RealSense
provides a reference for comparison that is computed independently
from the SPLAT or ORB SLAM2 trackers. From this comparison
it appears that SPLAT and ORB SLAM2 provide similar accuracy,
with SPLAT providing a statistically significant improvement in
relative pose estimation over short periods in some cases.

5.4 Performance
The spherical tracking method runs currently with an average of
25.1 frames per second with 2,000 ORB features per frame, at
a resolution of 960×540. With 750 features, we maintain similar
tracking rates at a framerate of 35.6 frames per second. The hardware
we use is a modern desktop with an Intel Core i9 processor. The
method is so far not optimized for speed.

We profiled the per-frame execution time of our Spherical P2P
solver and compared this to OpenCV’s P3P solver (cv::solveP3P) [3]
which is based on the method by Gao et al. [11]. We ran the same
video sequence on both algorithms within the same SLAM frame-
work, taking timings before and after the RANSAC computation.
We use Pre-emptive RANSAC [25] with 500 samples, and a block
size of 50. Due to the unconstrained pose from general P3P solver,
the tracking produced unsatisfactory results for an AR application,
while our method produced more stable pose output. Both algo-
rithms were able to successfully track to the end of the sequence
once initialized, for a total of 443 frames.

The results of a paired two-tailed t-test are shown in Table 2.
Spherical P2P shows small but significant speedup (p ≤ 0.0001).
This suggests that using a spherically constrained pose solution in

SPLAT ORB SLAM2
Data Set n ATE (m) Translation (m) Angle (deg) ATE (m) Translation (m) Angle (deg)

Spectator 1 1339 0.026±0.017 0.0070±0.0032 0.64±0.35 0.024±0.015 0.0075±0.0034 0.67±0.39
Spectator 2 808 0.016±0.007 0.0076±0.0040 0.68±0.42 0.017±0.009 0.0081±0.0053 0.72±0.48
Spectator 3 519 0.014±0.006 0.0053±0.0041 0.69±0.38 0.013±0.006 0.0058±0.0043 0.71±0.38
Spectator 4 901 0.026±0.016 0.0053±0.0033 1.01±0.57 0.028±0.016 0.0054±0.0034 1.14±0.62

Table 1: Absolute trajectory error (ATE) and relative pose error for SPLAT and ORB SLAM2 compared to RealSense tracking reference poses.
Relative pose errors are computed as translation and rotation differences over 6 frame (0.1s) intervals.

place of a general solution can offer performance benefits, despite
our less-optimized overall solution. The mean performance improve-
ment per frame was approximately 6ms, which could account for a
reasonable framerate boost.

Method Mean (ms) SD SEM N
Spherical P2P 22.31 9.68 0.46 443
OpenCV P3P 28.36 10.76 0.51 443

Table 2: Profiling results of OpenCV’s implementation for solving P3P
problems and general camera motion compared to our constrained
Spherical P2P solution.

6 AR PROTOTYPE

We integrated the spherical SLAM into an AR prototype. For this
purpose, we use the computed poses to place the virtual content at
the corresponding location within the real environment. The AR
prototype uses the OpenGL for rendering and the Assimp library3

for model loading. We implemented different prototypes, one for
visualizing 3D content for stadium environments (more specifically
Rugby, Figure 8, right), one for sightseeing applications visualizing
labels corresponding to sights in an urban environment (Figure 8,
left) as well as a guide for lecture theaters. For content placement in
these AR applications, we make use of the 3D point cloud created
by the SPLAT system. By selecting a 3D point in the point cloud
with a mouse click, we place content at this location.

Through our AR prototype, we were able to demonstrate some
important advantages in visualization that our SLAM system has
over a typical homography-based tracker. In many AR scenarios, it is
desirable to place virtual objects at different depths in the scene (such
as small widgets near the user, and large billboards in the distance).
While it is possible to render these objects with homography-based
tracking, the objects would exhibit no motion parallax with respect
to each other as the user moves. This kind of rendering would
only be correct if the user rotated about the camera center, which
is unrealistic. With our system, the objects can appear to cross
over each other as the user moves, adding an extra depth cue, and
resulting in a more convincing visualization. In our demo, we do
not address the fact that our system operates at an arbitrary scale.
However, localizing tracked frames to an existing map of known
scale could provide the information required for scale correction.

7 CONCLUSION AND FUTURE WORK

In this work, we proposed SPLAT—a SLAM system based on spher-
ical motion assumption. We presented a method for computing
spherically constrained absolute pose relative to a 3D map, and
integrated this into a complete tracking solution.

Our method showed more reliable tracking rates compared to
state-of-the-art ORB SLAM2, and we compared the accuracy of
both methods to reference data from a RealSense tracking camera.
We found that while ORB SLAM2 had advantages in absolute tra-
jectory errors, our method performed more reliably in synthetic
and real experiments. Our experiments showed SPLAT’s ability to

3http://www.assimp.org

track reliably in spaces of a range of sizes, and we demonstrated
its application through an AR rendering system. When presented

Figure 8: Application scenarios for Augmented Reality Prototype. Left)
Sightseeing application. Right) Virtual display board for rugby.

with spherical motion data, a general SLAM system can be ex-
pected to operate reliably in small spaces, while a panoramic tracker
would perform reliably in large spaces. However, our method can
be applied to many environments ranging in scale from an office
laboratory to a large sport stadium, provided the camera motion
is spherical. This has many direct applications, and is useful for
situations where the environment scale is unknown.

For future work, we want to focus on improving performance
of the system as a whole, as our initial profiling shows perfor-
mance advantages in using a simpler spherical pose computation.
We also think that more investigation into the benefits of our
Keyframe Sphere data structure could be useful, such as using it
to reduce global bundle adjustment overhead, in a similar way to
ORB SLAM2’s essential keyframe graph.

There is potential for extending this system to a hybrid method
(similar to [13]), combining both spherical and general motion by
linking multiple Keyframe Spheres and tracking general motion
between locations. A method like this would be useful in tourist ap-
plications, where users are moving from point-to-point, occasionally
initiating spherical motion when they stop to look around.

Acquiring ground-truth pose data for large scale video sequences
is a priority, and would allow for more extensive accuracy evalua-
tions. It is difficult to attain this, since ground-truth must respect the
spherical motion assumption. More accurate reference data could
come in the form of video sequences registered to pre-computed
Structure-from-Motion models, but would be subject to error.

Finally, pairing our tracking system with a global localization
method would improve its usefulness in AR. In a sport stadium, for
example, this would allow AR content to be easily placed in mean-
ingful locations, and be displayed correctly for multiple spectators.

ACKNOWLEDGMENTS

This project is supported by an MBIE Endeavour Smart Ideas grant
and NSF Award #1464420. We thank Animation Research Ltd,
Forsyth Barr Stadium, the Highlanders, Otago Rugby (ORFU) and
OptaPerform for their support.

REFERENCES

[1] M. Bloesch, J. Czarnowski, R. Clark, S. Leutenegger, and A. J. Davison.
CodeSLAM – learning a compact, optimisable representation for dense
visual SLAM. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2560–2568, 2018.

[2] J.-Y. Bouguet. Pyramidal implementation of the affine lucas kanade
feature tracker description of the algorithm. Intel Corporation, 5(1-
10):4, 2001.

[3] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software
Tools, 2000.

[4] M. Brückner, F. Bajramovic, and J. Denzler. Experimental evaluation
of relative pose estimation algorithms. In VISAPP (2), pp. 431–438,
2008.

[5] A. J. Davison and D. W. Murray. Simultaneous localization and map-
building using active vision. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 24(7):865–880, 2002.

[6] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. MonoSLAM:
Real-time single camera SLAM. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, (6):1052–1067, 2007.

[7] M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and
M. Csorba. A solution to the simultaneous localization and map build-
ing (SLAM) problem. IEEE Transactions on Robotics and Automation,
17(3):229–241, 2001.

[8] S. DiVerdi, J. Wither, and T. Hollerer. Envisor: Online environment
map construction for mixed reality. In 2008 IEEE Virtual Reality
Conference, pp. 19–26, March 2008. doi: 10.1109/VR.2008.4480745

[9] J. Engel, T. Schöps, and D. Cremers. LSD-SLAM: Large-scale di-
rect monocular SLAM. In European Conference on Computer Vision
(ECCV), September 2014.

[10] M. A. Fischler and R. C. Bolles. Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the ACM, 24(6):381–395,
1981.

[11] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng. Complete solution
classification for the perspective-three-point problem. IEEE transac-
tions on pattern analysis and machine intelligence, 25(8):930–943,
2003.

[12] S. Gauglitz, C. Lee, M. Turk, and T. Höllerer. Integrating the physical
environment into mobile remote collaboration. In Proceedings of the
14th international conference on Human-computer interaction with
mobile devices and services - MobileHCI ’12, p. 241. ACM Press, New
York, New York, USA, sep 2012. doi: 10.1145/2371574.2371610

[13] S. Gauglitz, C. Sweeney, J. Ventura, M. Turk, and T. Höllerer. Live
tracking and mapping from both general and rotation-only camera mo-
tion. In 2012 IEEE International Symposium on Mixed and Augmented
Reality (ISMAR), pp. 13–22. IEEE, 2012.

[14] J. Grubert, T. Langlotz, and R. Grasset. Ar browser survey. Technical
report, Graz University of Technology, December 2011.

[15] B. K. Horn, H. M. Hilden, and S. Negahdaripour. Closed-form solution
of absolute orientation using orthonormal matrices. JOSA A, 5(7):1127–
1135, 1988.

[16] A. Kendall, M. Grimes, and R. Cipolla. PoseNet: A convolutional
network for real-time 6-DOF camera relocalization. In Proceedings
of the IEEE International Conference on Computer Vision, pp. 2938–
2946, 2015.

[17] G. Klein and D. Murray. Parallel tracking and mapping for small ar
workspaces. In Proceedings of the 2007 6th IEEE and ACM Interna-
tional Symposium on Mixed and Augmented Reality, pp. 1–10. IEEE
Computer Society, 2007.

[18] D. Kurz, P. G. Meier, A. Plopski, and G. Klinker. An outdoor ground
truth evaluation dataset for sensor-aided visual handheld camera lo-
calization. In 2013 IEEE International Symposium on Mixed and
Augmented Reality (ISMAR), pp. 263–264, Oct 2013. doi: 10.1109/
ISMAR.2013.6671796

[19] T. Langlotz, J. Grubert, and R. Grasset. Augmented reality browsers:
Essential products or only gadgets? Communications of the ACM,
56(11):34–36, 2013. doi: 10.1145/2527190

[20] T. Langlotz, T. Nguyen, D. Schmalstieg, and R. Grasset. Next-
generation augmented reality browsers: Rich, seamless, and adap-

tive. Proceedings of the IEEE, 102(2):155–169, Feb 2014. doi: 10.
1109/JPROC.2013.2294255

[21] J. M. M. Montiel and A. J. Davison. A visual compass based on slam.
In Proceedings 2006 IEEE International Conference on Robotics and
Automation, 2006. ICRA 2006., pp. 1917–1922, May 2006. doi: 10.
1109/ROBOT.2006.1641986

[22] J. Müller, T. Langlotz, and H. Regenbrecht. Panovc: Pervasive telepres-
ence using mobile phones. In 2016 IEEE International Conference on
Pervasive Computing and Communications (PerCom), pp. 1–10. IEEE,
2016.

[23] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. Orb-slam: a versatile
and accurate monocular slam system. IEEE transactions on robotics,
31(5):1147–1163, 2015.

[24] R. Mur-Artal and J. D. Tardós. Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras. IEEE Transactions
on Robotics, 33(5):1255–1262, 2017.

[25] D. Nistér. Preemptive ransac for live structure and motion estimation.
Machine Vision and Applications, 16(5):321–329, 2005.

[26] C. Pirchheim, D. Schmalstieg, and G. Reitmayr. Handling pure camera
rotation in keyframe-based SLAM. In 2013 IEEE International Sym-
posium on Mixed and Augmented Reality, ISMAR 2013, 2013. doi: 10.
1109/ISMAR.2013.6671783

[27] G. Reitmayr and T. Drummond. Going out: Robust model-based
tracking for outdoor augmented reality. In ISMAR, vol. 6, pp. 109–118,
2006.

[28] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient
alternative to sift or surf. 2011.

[29] E. B. Saff and A. B. Kuijlaars. Distributing many points on a sphere.
The mathematical intelligencer, 19(1):5–11, 1997.

[30] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. Kelly, and
A. J. Davison. SLAM++: Simultaneous localisation and mapping at the
level of objects. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1352–1359, 2013.

[31] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A
benchmark for the evaluation of rgb-d slam systems. In Proc. of the
International Conference on Intelligent Robot Systems (IROS), Oct.
2012.

[32] R. Szeliski. Image alignment and stitching: A tutorial. Foundations
and Trend in Computer Graphics and Vision, 2(1):1–104, 2007.

[33] J. Ventura. Structure from motion on a sphere. In European Conference
on Computer Vision, pp. 53–68. Springer, 2016.

[34] D. Wagner, A. Mulloni, T. Langlotz, and D. Schmalstieg. Real-time
panoramic mapping and tracking on mobile phones. In 2010 IEEE
virtual reality conference (VR), pp. 211–218. IEEE, 2010.

[35] J. Young, T. Langlotz, M. Cook, S. Mills, and H. Regenbrecht. Immer-
sive telepresence and remote collaboration using mobile and wearable
devices. IEEE Transactions on Visualization and Computer Graphics,
25(5):1908–1918, May 2019. doi: 10.1109/TVCG.2019.2898737

[36] S. Zollmann, T. Langlotz, M. Loos, W. H. Lo, and L. Baker. Arspecta-
tor: Exploring augmented reality for sport events. In SIGGRAPH Asia
2019 Technical Briefs, pp. 75–78. ACM, 2019.

