
VRVideos: A flexible pipeline for Virtual Reality
Video Creation

1st Anthony Dickson
Depart. of Computer Science

University of Otago
Dunedin, New Zealand

dican732@student.otago.ac.nz

2nd Jeremy Shanks
Depart. of Computer Science

University of Otago
Dunedin, New Zealand

shaje415@student.otago.ac.nz

3rd Jonathan Ventura
Depart. of Computer Science and Software Engineering

California Polytechnic State University
San Luis Obispo, USA
jventu09@calpoly.edu

4th Alistair Knott
School of Engineering and Computer Science

Victoria University of Wellington
Wellington, New Zealand

ali.knott@vuw.ac.nz

5th Stefanie Zollmann
Depart. of Computer Science

University of Otago
Dunedin, New Zealand

stefanie.zollmann@otago.ac.nz

Abstract—Recent advances in Neural Radiance Field (NeRF)-
based methods have enabled high-fidelity novel view synthesis
for video with dynamic elements. However, these methods often
require expensive hardware, take days to process a second-long
video and do not scale well to longer videos. We create an end-
to-end pipeline for creating dynamic 3D video from a monocular
video that can be run on consumer hardware in minutes per
second of footage, not days. Our pipeline handles the estimation
of the camera parameters, depth maps, 3D reconstruction of
dynamic foreground and static background elements, and the
rendering of the 3D video on a computer or VR headset. We
use a state-of-the-art visual transformer model to estimate depth
maps which we use to scale COLMAP poses and enable RGB-D
fusion with estimated depth data. In our preliminary experiments,
we rendered the output in a VR headset and visually compared
the method against ground-truth datasets and state-of-the-art
NeRF-based methods.

Index Terms—Virtual Reality, Image Processing, Computer
Vision, Reconstruction, Artificial Intelligence, Vision and Scene
Understanding

I. INTRODUCTION

Virtual Reality (VR) headsets and VR experiences gained
a lot of attention in recent years. This development was in
particular driven by the increasing affordability and accessibility
of VR headsets in the consumer market. While they are still
mostly used for gaming and content consumption, recently there
is more interest in creating content for these devices—a process
that typically requires special hardware or expertise. There are
several devices for creating content for VR consumption such
as stereo cameras. However, often they are expensive such as
360 6-DoF cameras or only allow for capturing 360 footage or
360+depth footage which does not provide a fully immersive
experience. In addition, a lot of existing image content that has
been captured already is difficult to consume on such devices.

In contrast, image synthesis and image-based rendering often
work with monocular video input. In particular, light fields [5],
layered representations [2] and Neural Radiance Field (NeRF)
[6] have become popular in recent years. They come with the

advantage of synthesising views that have not been seen in
the original capture. However, they also come with a high
computational cost. This is a particular problem for dynamic
video data.

In our work, we work towards addressing the challenge of
high computational cost by combining traditional geometric
methods with machine learning-based depth estimation and a
layered representation to capture dynamic contents. We propose
an end-to-end pipeline for creating 3D content from monocular
video that handles the estimation of the camera parameters,
depth maps, 3D reconstruction of dynamic foreground and
static background elements. In addition, our pipeline can render
3D video on a computer, mobile device or VR headset. Our
pipeline is flexible as it can be run with monocular RGB video,
RGB-D video, or RGB-D datasets with ground-truth pose data.
This flexibility means that we can easily use the pipeline to
compare the quality of the results in future experiments and
are able to provide a flexible benchmarking system for the
creation of VR videos.

In our preliminary experiments, we demonstrate how to use
the output in a VR headset and inspect how the method visually
compares against state-of-the-art NeRF-based methods.

II. RELATED WORK

Our work is closely related to methods that aim to create 3D
photographs and 3D videos. Furthermore, it relies on COLMAP,
learned models for depth estimation and Truncated Signed
Distance Function (TSDF) fusion.

A. 3D Photographs

In recent years there have been many methods proposed
to create 3D photographs that provide immersive experiences
from single images. One of the main characteristics of these
3D photographs is that they enable novel view synthesis with
motion parallax. Hedman et al. [1] construct 3D panoramas
from RGB-D data captured with a dual-camera iPhone that



Fig. 1. VRVideos: Left) VR video created from ground truth (Actual depth data and pose data), Middle) VR video from actual depth data and computed pose
data, Right) VR video from monocular video using estimated depth and estimated pose data.

exhibits realistic motion parallax. However, their method is only
demonstrated on static scenes without any people. Niklaus et al.
[9] and Kopf et al. [2] leverage learned depth estimation models
and inpainting to produce realistic view synthesis. Niklaus et
al. [9] focus on creating a 3D zoom effect and introduce a
pipeline for improving off-the-shelf depth estimation models,
addressing common issues with depth estimation models such
as wavy walls.

B. 3D Video

While most of the above methods work on single images,
Wang et al. [13] propose a method for creating 3D video
from a pair of near-duplicate photos. Their method includes a
neural network trained to synthesise novel views from layered
depth images and 2D image features. This approach enables a
plausible estimation of how appearance may change between
the pair of photos. NeRF methods have been developed that
can produce high-quality novel view synthesis from a set of
a few photographs [6]. Recent methods are able to create
NeRF representations within a few seconds [7]. NeRF-based
methods have also been applied to video with dynamic elements
[3], [4], [15]. The implicit representation inherent to neural
networks helps address many of the challenges in reconstructing
dynamic 3D scenes with estimated depth and TSDF fusion-
based approaches. The main drawback of these methods is their
expensive hardware requirements, long compute time and poor
scaling with video length. In the work of Li et al. [3] training
took one week on 8 NVIDIA Volta GPUs for a 10-second, 30
FPS clip.

Earlier methods have also been proposed to extract 3D
representations from videos. Still, they are either trained for
a specific use case such as soccer [11] or focus on static or
rotating cameras [17].

In our work, we combine traditional geometric methods
with machine learning-based depth estimation and a layered
representation to capture dynamic contents to reduce the
computation time and the complexity of the VR videos to
make them suitable for replay in a VR headset.

III. 3D VIDEO PIPELINE

Our pipeline for creating and rendering VR video consists of
four main steps: data preparation; creating a 3D representation

of the static background; creating a 3D triangle mesh represen-
tation of the dynamic foreground for each frame of the video
sequence; and rendering the 3D video (Figure 2). Our pipeline
is created with the main purpose of taking monocular video
as input but is also flexible enough to support TUM RGB-
D datasets [12] or RGB-D datasets captured on an iPhone1.
These two RGB-D formats are intended for comparing the
quality of the 3D video when using different combinations of
ground-truth and estimated data for depth and camera pose in
our experiments.

A. Data Preparation

Our pipeline requires depth data, segmentation masks of
dynamic foreground objects, and pose data for further process-
ing. When the pipeline is only given RGB video, we need to
compute these before further processing.

For depth estimation, we use the DPT depth estimation model
[10] on each of the RGB frames. We use the model weights
that were fine-tuned on the NYU dataset [8] and produce depth
that roughly corresponds to meters (the model outputs depth
in the interval [0, 10]).

For the segmentation of dynamic foreground, we create
Detectron2 [14] instance segmentation masks for each frame
of the video and derive binary masks for any people in the
video.

In addition, we use COLMAP’s automatic reconstructor
pipeline to estimate the camera parameters. Since running
COLMAP on many frames (e.g., several hundred) can take
more than several hours, we use a ‘frame step’ parameter to
uniformly sample a subset of frames to lower the runtime
and interpolate the poses of the in-between frames. We use
the instance segmentation masks to make sure that COLMAP
ignores detected image features in dynamic areas.

B. Static Background Mesh Reconstruction

For computing the static background of the video, we use
TSDF fusion [16]. TSDF is a 3D voxel volume where each
voxel is labelled with its distance to the nearest surface that
used for dense mesh reconstruction. We use this in combination
with the estimated depth maps and instance segmentation to
create a single static mesh for the background.

1https://www.strayrobots.io/components/stray-scanner-collect-rgb-d-datasets-on-iphone



Fig. 2. Overview of our pipeline for creating a VR video. Our pipeline consists of four main steps: preparing the data; creating a 3D representation of the
dynamic foreground for each frame of the video sequence; creating a 3D representation of the static background; and rendering the 3D video.

C. Dynamic Mesh Reconstruction
The next step is to compute a mesh representation of parts

of the scene that change per frame. Our approach is based
on the meshing technique from the paper “Soccer on Your
Tabletop” [11] and creates a textured triangle mesh from an
RGB frame, depth map, camera matrix, camera pose and
instance segmentation mask.

We thereby create a 3D point cloud by projecting the
2.5D points (2D image coordinates + depth) into 3D world
coordinates by applying the depth, inverse camera matrix and
inverse pose to each 2D point in the image:

Xp = [R|t]−1(dpK−1 p)

where: p is the 2D pixel coordinates of a point in the current
frame; Xp is p projected into 3D world coordinates; [R|t]
is the camera pose matrix for the current frame which is
a concatenation of the rotation matrix R and the translation
column vector t; dp is the depth at p; K is the camera intrinsic
parameter matrix.

The mesh faces are created by running Delaunay triangula-
tion on the 2D points within the dynamic regions of a given
frame. The faces are then filtered out if the corresponding 2D
point of a vertex is more than 2 pixels away from the other
vertices in the face, or if the corresponding depth value for a
vertex is more than 10cm away from other vertices in the face.
This filtering step removes stretched out mesh faces and parts
of the background that were mislabelled as foreground.

Once the mesh geometry has been created, the next step
is to map the texture and UV coordinates. We crop the RGB
frame to the extent of the 2D points (minimum and maximum
coordinates along each axis) and use this as the texture. The
UV Coordinates are then the 2D points shifted so that they are
relative to the top left corner of the texture.

Once all objects in the frame have been processed, the mesh
data is merged into a single mesh object for the current frame.

D. Export and Rendering

To the best of our knowledge, there is no standard file format
for mesh videos. We export the 3D video to a folder containing
three files for the: foreground meshes, background mesh, and
metadata file. We leverage the glTF file format to store the
foreground meshes of all frames in a single file. Each mesh is
labelled with its frame index since some video frames will not
have any dynamic elements in them and thus have no mesh.
This ensures that frames can be displayed at the correct time.

We implement a web-based application using THREE.js2 for
rendering the 3D videos to either a typical computer display or
a VR headset. Our renderer is portable, performant and supports
basic replay capabilities such as starting/stopping/forwarding
the video. It runs on desktop computers, laptops, mobile devices
and VR headsets at a steady 60 FPS.

IV. PRELIMINARY RESULTS

We used our web-based VR video renderer to demonstrate
how the output of our pipeline can be replayed in a VR headset
(Oculus Quest 2). We used this for first feasibility testing and
quality inspection. Our VR video player allowed us to render
with 60 FPS on the device which is suitable for immersive
experiences. We also used the VR video player to inspect
the quality that can be achieved from RGB input compared
to the quality that can be achieved from RGB-D videos or
RGB-D datasets with ground truth data (Figure 1) by using the
TUM RGB-D dataset [12] that comes with RGB-D data and
ground truth pose data. While the results showed that there is
a reduction in visual quality, we are interested to analyse how
much this decrease in quality affects the user experience.

In addition, we compared how the results of our method
visually compare against state-of-the-art NeRF-based methods
that take several days to compute (Figure 3). While we do not

2https://threejs.org



Fig. 3. Comparison of output between NSFF [4] and our pipeline on the ‘kid
running’ sequence. Please note that we are not using image inpainting to fill
in missing parts of the scene.

achieve the same visual quality and have more visual artefacts
present, there is still a major advantage in that the results are
created within a few minutes and rendered at interactive frame
rates on a VR headset.

We make video comparisons available online for the pipeline
using a sequence from the TUM RGD-D dataset3 and our own
dataset with ground-truth depth and pose data captured with
an iPhone4.

V. CONCLUSION AND FUTURE WORK

In this work, we proposed an end-to-end pipeline for creating
3D content from a monocular video that handles the estimation
of the camera parameters, depth maps, 3D reconstruction
of dynamic foreground and static background elements. We
demonstrated how our pipeline renders the created VR video
on a computer or VR headsets with interactive framerates.

The next steps of our work include experiments that
investigate the accuracy of single parts of this pipeline, such
as pose data, estimated depth, and an in-depth investigation of
how the output from our method compares against state-of-the-
art NeRF-based methods and how users perceive the achieved
quality.

ACKNOWLEDGMENT

We gratefully acknowledge the support of the New Zealand
Marsden Council through Grant UOO1724 and the U.S.
National Science Foundation through award #2144822.

REFERENCES

[1] P. Hedman and J. Kopf. Instant 3d photography. ACM Transactions on
Graphics (TOG), 37(4):1–12, 2018.

[2] J. Kopf, K. Matzen, S. Alsisan, O. Quigley, F. Ge, Y. Chong, J. Patterson,
J.-M. Frahm, S. Wu, M. Yu, et al. One shot 3d photography. ACM
Transactions on Graphics (TOG), 39(4):76–1, 2020.

[3] T. Li, M. Slavcheva, M. Zollhoefer, S. Green, C. Lassner, C. Kim,
T. Schmidt, S. Lovegrove, M. Goesele, and Z. Lv. Neural 3d video
synthesis. arXiv preprint arXiv:2103.02597, 2021.

[4] Z. Li, S. Niklaus, N. Snavely, and O. Wang. Neural scene flow fields
for space-time view synthesis of dynamic scenes. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 6498–6508, 2021.

3https://youtu.be/Sd5yuztCyVE
4https://youtu.be/maxED7CCZNY

[5] B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. K. Kalantari,
R. Ramamoorthi, R. Ng, and A. Kar. Local light field fusion: Practical
view synthesis with prescriptive sampling guidelines. ACM Trans. Graph.,
38(4), jul 2019.

[6] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng. Nerf: Representing scenes as neural radiance fields for view
synthesis. In ECCV, 2020.

[7] T. Müller, A. Evans, C. Schied, and A. Keller. Instant neural graphics
primitives with a multiresolution hash encoding. ACM Trans. Graph.,
41(4):102:1–102:15, July 2022.

[8] P. K. Nathan Silberman, Derek Hoiem and R. Fergus. Indoor segmentation
and support inference from rgbd images. In ECCV, 2012.

[9] S. Niklaus, L. Mai, J. Yang, and F. Liu. 3d ken burns effect from a
single image. ACM Transactions on Graphics (ToG), 38(6):1–15, 2019.

[10] R. Ranftl, A. Bochkovskiy, and V. Koltun. Vision transformers for dense
prediction. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 12179–12188, 2021.

[11] K. Rematas, I. Kemelmacher-Shlizerman, B. Curless, and S. Seitz. Soccer
on your tabletop. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4738–4747, 2018.

[12] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A
benchmark for the evaluation of rgb-d slam systems. In Proc. of the
International Conference on Intelligent Robot Systems (IROS), Oct. 2012.

[13] Q. Wang, Z. Li, D. Salesin, N. Snavely, B. Curless, and J. Kontkanen.
3d moments from near-duplicate photos, 2022.

[14] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick. Detectron2.
https://github.com/facebookresearch/detectron2, 2019.

[15] W. Xian, J.-B. Huang, J. Kopf, and C. Kim. Space-time neural irradiance
fields for free-viewpoint video. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages
9421–9431, 2021.

[16] A. Zeng, S. Song, M. Nießner, M. Fisher, J. Xiao, and T. Funkhouser.
3dmatch: Learning local geometric descriptors from rgb-d reconstructions.
In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1802–1811, 2017.

[17] S. Zollmann, A. Dickson, and J. Ventura. Casualvrvideos: Vr videos from
casual stationary videos. In 26th ACM Symposium on Virtual Reality
Software and Technology, pages 1–3, 2020.


