
Benchmarking Monocular Depth Estimation Models
for VR Content Creation from a User Perspective

Anthony Dickson
Department of Computer Science

University of Otago
Dunedin, New Zealand

dican732@student.otago.ac.nz

Alistair Knott
Department of Computer Science

University of Otago
Dunedin, New Zealand

alik@cs.otago.ac.nz

Stefanie Zollmann
Department of Computer Science

University of Otago
Dunedin, New Zealand

stefanie.zollmann@otago.ac.nz

Abstract—Exploring monocular images and videos in 3D in
Virtual Reality (VR) requires reliable methods for estimating
depth as this has not been captured in the original footage.
There are monocular depth estimation methods that address this
requirement by using neural network models to predict depth
values for each pixel. However, as this is a quickly moving field
and the state-of-the-art is constantly evolving, how do we choose
the best depth estimation model for 3D content creation for VR?
It can be difficult to interpret the widely used benchmark metrics
and how they relate to the quality of the created 3D/VR content.

In this paper, we explore a user-centred approach to evaluating
depth estimation models with regard to 3D content creation. We
look at evaluating these models based on content created with
these models that an end-user might see, rather than just their
immediate output (depth maps) that does not directly contribute
to users’ perceptual experience. In particular, we investigate the
relationship between commonly used depth estimation metrics,
image similarity metrics applied to synthesised novel viewpoints,
and user perception of quality and similarity of these novel view-
points. Our results suggest that the standard depth estimation
metrics are indeed good indicators of 3D quality, and that they
correspond well with human judgements and image similarity
metrics on novel viewpoints synthesised from a range of sources
of depth data. We also show that users rate a state-of-the-art
depth estimation model as almost visually indistinguishable from
the outputs derived from ground truth sensor data.

I. INTRODUCTION

Monocular depth estimation methods provide the ability to
create 3D content from single images. This creates several
new exciting opportunities such as creating 3D photographs
[1] from a single monocular photograph, 3D Panoramas [2] as
well as VR content [3]. In recent years, many novel approaches
for computing depth from single images have been proposed
and have advanced the state of the art. In particular, monocular
depth estimation (MDE) models that employ neural networks
have demonstrated their ability to accurately reconstruct depth
maps from single images. There have been approaches that
have engineered the architecture to allow the training of larger
and deeper networks [4], ones that have cast the problem of
depth estimation as an ordinal regression problem [5], ones
that have included geometric priors [6], ones that have been
trained on a wide range of datasets [7] and even ones that

forego the standard fully convolutional architecture in favour
of a visual transformer architecture [8].

It is standard practice to benchmark newly proposed models
against the state-of-the-art by using ground truth depth data
[9], [10] as well as using a standard set of metrics that
often include at least: relative error, RMSE, and thresholded
accuracy at three thresholds (1.25, 1.252 and 1.253). One
thing in common with all of these metrics is that they
measure depth error on a pixel-wise basis. The main reason
for using these metrics is that an early focus of MDE was on
autonomous navigation. However, with more interest in using
MDE for 3D content creation, an important question arises:
Are these traditional benchmarks suitable for benchmarking
MDE models for 3D and VR content creation? In fact, these
metrics can be rather difficult to interpret in this sense. Imagine
a 3D application that uses MDE models in the 3D content
creation process and we present a user with the outputs from
two different models, what would the differences in the metrics
mean for the user? How do the metrics relate to the quality
of what the user sees? And how do we interpret the absolute
figures from these metrics (e.g. what does a relative error of
0.150 mean)? Is there a point where the metrics relate to an
acceptable quality for 3D content?

In this paper, we work towards answering these questions
and present the full results of our poster on this topic [11].
We first generate a dataset of animated novel viewpoint videos
from the NYU dataset [9] by using different MDE models. We
then compare the frames of these videos with frames rendered
with ground truth depth using widely used image similarity
metrics. We then conduct a user study where participants are
tasked with comparing pairs of videos in terms of similarity
and rating individual videos in terms of quality. Our results
indicate that the standard depth estimation metrics behave
similarly to human judgements and to image-centric metrics.
We also show that traditional image similarity metrics can
struggle with evaluating 3D deformations such as in Figure 1.

II. BACKGROUND

To the best of our knowledge, there is little work that
examines the ability of the standard depth estimation metrics
to accurately and thoroughly evaluate depth estimation models
for VR content creation.978-1-6654-0645-1/21/$31.00 ©2021 IEEE
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Fig. 1. An image from the NYU dataset rendered from different perspectives using depth maps from: the ground truth data, a small depth estimation model
with random weights (HU-ENB0-RW), a small depth estimation model (HU-ENB0) and a large depth estimation model (HU-SENET). In the bottom right
corner of each synthesised image are the PSNR, SSIM and LPIPS metrics for each image compared to the ground truth. Notice how PSNR and SSIM give
similar numbers for the model with random weights HU-ENB0-RW (middle-left) and the same model that has been trained HU-ENB0 (middle-right), despite
the obvious and large difference in quality.

A. Standard Benchmark Metrics

For clarity, we will define the metrics that we refer to as
‘standard benchmark metrics’. These are the metrics that are
common throughout the vast majority of the recent literature.
These metrics are:
• Accuracy under a threshold: percentage of d̂i such that

max( d̂i

di
, di

d̂i
) = δ < threshold where: di is the depth value

at pixel i of the ground truth depth map d; and d̂i is the
depth value at pixel i of the estimated depth map d̂. In
depth estimation literature, it is common practice to use
the following three threshold values: δ < 1.25, δ < 1.252

and δ < 1.253. We refer to these as DEL1, DEL2 and
DEL3 in the results.

• Mean relative error (REL): 1
N

N∑
i=1

||di−d̂i||1
di

where N

denotes the total number of valid pixels (pixels with
nonzero depth) for a given sample.

• Root mean squared error (RMSE):

√
1
N

N∑
i=1

(di − d̂i)2

It is unclear whether these metrics are enough to evaluate these
models, especially if the application of the models goes beyond
just depth estimation. What if we want to use these models
for 3D content creation? Is choosing the model with the best
performance on the commonly used metrics enough for this?
One challenge with these metrics is that they are calculated
on pixel-wise residuals without explicit regard to the spatial
relationships between pixels.

B. Evaluating Depth Estimation Metrics

Cadena et al. [12] discuss the limitations of the standard
metrics due to them being ‘image-space’ metrics. They bring
up three main issues: resolution, density and coverage. Many
methods, including state-of-the-art methods, predict depth
maps at a lower resolution than that of the ground truth
and thus requiring either the estimated or ground truth to be
rescaled. Usually, the estimated depth map is up-scaled via
bilinear interpolation to match the resolution of the ground
truth, and the authors argue that the interpolated data often
disagrees with the ground truth data, negatively impacting
the evaluation. Density and coverage are closely related; the
issue with density is that methods that predict sparse depth

may be at an advantage over methods that predict dense
depth in current evaluation methods, whereas coverage is more
concerned with methods that predict dense depth for only a
portion of the scene (e.g. planar surfaces such as roads). The
authors propose that rather than evaluating depth estimation
models in image space, we can evaluate them in 3D space
by projecting points into 3D space using the depth map and
known camera parameters.

Koch et al. [13] posit that MDE models are evaluated with
metrics that compare global statistics of depth residuals and
that these metrics do not directly assess the accuracy of planar
surfaces or depth discontinuities (boundaries). The accuracy
of planar surfaces is indeed an issue with MDE models as
demonstrated in Figure 1 and is an issue that Niklaus et al.
[1] had to directly address. Koch et al. propose four metrics:
two that measure the smoothness and orientation of estimated
3D planes and ground truth 3D planes (they create a dataset
with annotations of planar surfaces); and two that measure the
accuracy and completeness of depth boundaries.

These papers only look at how depth estimation models are
evaluated for the task of depth estimation and do not directly
look into how the evaluation methods relate to the quality
of the 3D content created with these models. Cadena et al.’s
approach uses 3D point clouds to evaluate depth estimation
models [12], but they do not look into synthesised novel views
whose quality is very dependent on the quality of the depth
data. Koch et al. [13] improve upon the standard metrics, but
they do not look into evaluating depth estimation models in 3D
space or 3D content created with these models. In this paper,
we create a 3D mesh and evaluate images rendered from this
mesh with image similarity metrics and human judgements.

III. DATASET CREATION

To evaluate depth estimation models for 3D content cre-
ation, we create a video dataset that simulates different per-
spectives from a single image. We create a video from each
of the images in the test set of the NYU v2 dataset [9]. Each
video is created from a single RGB-D frame and shows a
virtual camera being moved around a 3D mesh created from
this RGB-D frame.



A. From RGB-D Frame to Textured Triangle Mesh

As input, we use a RGB-D frame where the depth map
can be either be the ground truth depth data or estimated by
an MDE model. Depth maps are normalised to the range [0,
1] to simplify the handling of depth maps of different scales
and ranges. The RGB-D frame is used to create a textured
triangle mesh. We start with a plane mesh and subdivide it
some number times depending on how dense we want the
mesh to be. In our experiments, we create a plane mesh on
the XY plane (y-up) with 257 vertices along the sides of the
mesh (total of ∼130K triangles). The y-position of the vertices
are adjusted so that the plane mesh has the same aspect ratio as
the input. Since the vertex positions are in normalised device
coordinates, they range from 0 to 1 and adjusting the mesh
to the same aspect ratio can be done by multiplying the y-
coordinates by the height of the input images divided by the
width of the input images. The z-coordinates of the vertices
are displaced by the depth value of the corresponding pixel
in the depth map, and the colour of the vertices are set in a
similar way by sampling the input colour frame (using nearest-
neighbour sampling).

B. Rendering

We render the meshes created from RGB-D frames with
OpenGL. In addition to the meshes, we also need to define a
virtual camera and a camera trajectory. The virtual camera uses
a projection matrix created with a vertical field of view of 18
degrees and an aspect ratio based on the input images (4:3 for
the NYU dataset). We choose a small field of view so that we
can move the camera around while showing the edges of the
mesh where there is no data as little as possible. For the camera
trajectory, we move around the mesh in an elliptical path and
the camera is rotated towards the centre of the mesh in order to
help emphasise the 3D effect (Figure 2). Since we are using a
virtual camera with different parameters to the camera(s) used
to capture the RGB-D data and normalised depth values, the
meshes may exhibit a 3D effect that is either too pronounced
or too subtle. As such, the z-coordinates of the mesh vertices
are also multiplied by a scalar to reach the desired level of 3D
effect. For the NYU dataset, we found that a value of 4.0 gave
the most accurate results given the virtual camera parameters.
We record the sequence at 60 FPS and save the output to a
video file. The rendering process described above is repeated
for each of the models listed below.

C. Depth Estimation Models

For our experiments, we use five different models/depth map
sources:
• GT: The ground truth depth maps from the NYU dataset.
• FLAT: This model simply returns a depth map where

all pixels are set to zero and is only used in the user
study. The reason for including this model is explained
in Section V.

• HU-SENET: The state-of-the-art MDE model from Hu et
al. [14]. We include this model as a representative of the
state-of-the-art.

Fig. 2. Four synthesised frames using the ground truth depth maps showing
the camera trajectory (left to right, top to bottom).

• HU-ENB0: A version of the model architecture from
Hu et al.’s paper where we use EfficientNet-B0 for the
encoder portion of the network. This model has 5.3
million parameters and is much smaller than HU-SENET
which has 157 million parameters. It also uses around half
the memory but it is less accurate.

• HU-ENB0-RW: An untrained version of the HU-ENB0
that uses randomly initialised weights serving as a low
quality baseline.

D. Limitations

The way that meshes are created is simple, and it may result
in artefacts. Mainly, we see stretching along strong edges and
blurring of the textures along these edges. The solution, which
is implemented in previous works [1], [2], is to either stick
with a point cloud representation, to tear the mesh along strong
edges or to use a layered representation.

IV. IMAGE SIMILARITY BENCHMARK

We employ widely used image similarity metrics to generate
quantitative assessments over the entire dataset. The purpose
of this benchmark is to provide a way to evaluate the gener-
ated dataset in a way that follows human judgements using
quantitative measures. It also allows us to evaluate the entire
dataset, which would be difficult, not to mention costly, if it
were to be done with human judgements. It also provides some
insight into the strengths and weaknesses of the widely used
image similarity metrics.

We use four metrics for quantitatively measuring image sim-
ilarity: SSIM, PSNR, LPIPS and MIFD. SSIM [15] and PSNR
[16] are ubiquitous in image similarity tasks that compare
statistics on the pixel values of two images. LPIPS [17] is
a newer metric that has seen quick adoption in recent work. It
takes a different approach to comparing images by comparing
the outputs from the various layers of a convolutional neural
network. Mean Image Feature Distance (MIFD) is similar to
reprojection errors used in camera calibration and measures
how far image features have moved from one image to another.
More precisely, we calculate MIFD as the average Euclidean



distance between SURF features that are present in both
images with the SURF features being filtered using Lowe’s
ratio test with a threshold of 0.7. For the details of the other
metrics, we direct readers to the cited sources.

These metrics all have their own pros and cons. For ex-
ample, PSNR is a simple metric that compares the observed
difference (as MSE) and the maximum potential difference
between two images. SSIM is a bit more sophisticated in
how it compares two images and compares various statistics
on a sliding window of pixels from the images. LPIPS is
more complicated to compute than PSNR or SSIM, but has
been shown to more closely follow human judgements when
comparing an image to a copy that has basic transformations
applied to it (e.g. blur). MIFD is different from the other
metrics in that it is more focused on geometric differences
as opposed to differences in pixel values.

For this benchmark, we evaluate five evenly spaced frames
per video starting with the first frame as shown in Figure 2.
This cuts down the total number of frames from 192K to
3.2K which makes the benchmark close to 60 times faster
to run. This is especially important since MIFD relies on
image feature detection and matching algorithms that cannot
be applied to batches of images like the other metrics and is
thus much slower to compute on large datasets.

V. USER STUDY

In order to compare how users perceive 3D content and how
their perception relates to the standard benchmark metrics, we
run a user study to evaluate user perception of the created
dataset. We asked participants to assess single videos in terms
of absolute quality and pairs of videos in terms of similarity.
We recruited 20 participants through Amazon’s online service
Mechanical Turk (MTurk). We allotted each participant up
to 20 minutes to ensure the results were not affected by the
fatigue/boredom of the participants. This time limit also limits
how many different conditions (models and scenes) we can
include in the study. The NYU test set consists of 654 RGB-
D frames and it would be impractical and costly to run a study
using all of these data points. Hence, we choose to use just
four of the images (see Figure 3) that have a wide range of
depth values and relatively well lit. The study was approved
by the University of Otago Human Ethics Committee.

Each of the models used in the dataset generation are paired
off with the ground truth and each their videos are combined
into a new video that shows them side-by-by. With four scenes
and four model pairs, we have a total of 16 different videos
for each participant to evaluate. The order of videos was
randomised using Latin square. We refer to each paired video
as a ‘task’, and we ask three questions per task. First, we
ask participants to rate how similar the inputs are, then we
ask them to rate how realistic the 3D effect is in each of the
inputs (two) using a 7-point Likert score.

Two of the models, FLAT and HU-ENB0-RW, are included
to ensure that participants are paying attention and understand
the tasks they have been given. The flat depth maps are there
to check whether participants are able to distinguish between

Fig. 3. The scenes used in the user study.

videos with and without a visible 3D effect. Participants are
coached to give a lower rating for realism if they notice
flat-looking geometry/videos. The depth maps based on HU-
ENB0-RW and the resulting rendered novel viewpoints are low
quality and easy to distinguish as unrealistic. If a participant
does not consistently rate the outputs of this model as lower
quality and dissimilar to the ground truth, it would indicate
that they likely do not understand the task or are not pay-
ing attention and just choosing arbitrary answers. To ensure
that participants spend enough time to carefully answer the
questions, we program the study’s webpage such that once
the participant starts a video, it must be played at least three
times before participants can fill out their responses.

Participants are given some brief training/coaching before
they start. They are shown examples of what could be consid-
ered realistic versus what could be considered unrealistic (e.g.
curved walls, noisy depth). They are also shown examples of
a scene rendered with a flat depth map versus one rendered
with the ground truth to exemplify what a lack of depth
may look like. While giving participants coaching on what
to look out for could potentially introduce unwanted bias,
participants seemed to struggle to evaluate realism in early
tests where they were given minimal instruction. We also
collected demographic data from the participants (12 male,
4 female, age ranging from 20-49, median=32, VR usage
ranging from never (5%), once or twice (30%), at least once
a year (25%), at least once a month (15%), to at least once a
week (25). All participants reported to have normal/corrected-
to-normal vision.

VI. RESULTS

In the following, we will present the results from the depth
estimation benchmark, the image similarity benchmark and the
user study and discuss them.

A. Depth Estimation Benchmark

Overall the results from the standard depth estimation
benchmark are what one would expect; the larger model (HU-
SENET) is more accurate than the smaller model (HU-ENB0)
and the model with random weights (HU-ENB0-RW) is very



TABLE I
BENCHMARK RESULTS USING THE STANDARD METRICS.

↓ Lower is Better ↑ Higher is Better

Model REL RMSE DEL1 DEL2 DEL3

HU-ENB0-RW 0.991 3.063 0.000 0.000 0.000
HU-ENB0 0.141 0.608 0.812 0.959 0.990
HU-SENET 0.115 0.530 0.866 0.975 0.993

TABLE II
IMAGE SIMILARITY BENCHMARK RESULTS ON ENTIRE NYU TEST SET.

SSIM PSNR LPIPS MIFD

HU-ENB0-RW 0.675 16.1 0.453 93.9
HU-ENB0 0.696 16.7 0.346 40.4
HU-SENET 0.757 19.1 0.249 26.4

inaccurate (Table I). However, it is important to note that some
of the results between HU-SENET and HU-ENB0 only differ
by a small amount (e.g. REL 0.115 vs 0.141).

B. Image Similarity Benchmark

Based on the image metrics, HU-SENET also outperforms
the other models (Table II). One area where the results differ
from the depth estimation benchmark results is how well the
metrics discriminate between the models HU-ENB0 and HU-
ENB0-RW. In the depth estimation metrics, we observe a dif-
ference of between 5-6x for REL and RMSE on these models,
whereas SSIM only differs by 3%, PSNR by 3.6%, LPIPS by
24%. This is quite surprising considering how distorted and
noisy the outputs from HU-ENB0-RW are compared to HU-
ENB0 (refer back to Figure 1 for an example). The metric
that shows the largest difference between these models is
MIFD which is 2.3x more for HU-ENB0-RW than HU-ENB0.
Overall, LPIPS and MIFD seem to have more discriminative
power than SSIM or PSNR. MIFD seems to be the most robust
measure here and this is likely due to it being based around
geometric error, however it is slower to compute since it is
difficult to compute on images batches like the other metrics.

C. User Study

The results from the user study resemble the ranking of
the two previous benchmarks where the largest model ranks
the highest followed by HU-ENB0 and then HU-ENB0-RW
for both measurements similarity and realism. However, it is
important to note HU-ENB0 and FLAT score similar neutral
results for both measurements.

A Kruskal-Wallis rank sum test indicated a main effect
of MDE model on similarity rating (Figure 4). Pairwise
comparisons using Wilcoxon rank sum test with Bonferroni
correction indicated a significant difference between the ran-
domised weights GT-HU-ENB0-RW (MD=4) and all other
models: GT-FLAT (MD=5, p=0.0001), GT-HU-ENB0 (MD=5,
p=7.67e-06) and GT-HU-SENET (MD=6 , p=4.8e-10) (Figure
5). We also found a significant difference between GT-FLAT
and both GT-HU-ENB0-RW (p=0.0001) and GT-HU-SENET

Fig. 4. Distribution of similarity scores by model.

Fig. 5. Distribution of scores for realism of 3D effect by model.

(p=0.001). We also found a significant difference between HU-
ENB0 and HU-SENET (p=0.013).

For the questions relating to the realism, the Kruskal-
Wallis rank sum test indicated a main effect of MDE model
on realism (Figure 5). Pairwise comparisons using Wilcoxon
rank sum test (Bonferroni correction) indicated a significant
difference between the model with randomised weights HU-
ENB0-RW (MD=2) and all other models: FLAT (MD=4, p <
.001), HU-ENB0 (MD=4, p < .001) and HU-SENET (MD=5,
p < .001). We also measured significant differences between
HU-ENB0 and HU-SENET (p=0.0138), but no significant
difference between HU-SENET and GT (p=0.486).

D. Discussion

Overall, the results seem to support the standard benchmark
metrics as both the user study and the image similarity
benchmark agree on the general ranking of the models. We
also see that SSIM and PSNR can struggle with geometric
transforms and weaken the discriminative power of the image
similarity benchmark, despite it being designed to mimic how
a user may evaluate depth maps. It is interesting that no



significant difference was found between HU-ENB0 and the
flat depth maps (i.e. no depth). Users only somewhat agreed
that the outputs from HU-ENB0 and the flat depth maps
were similar to the ground truth, and they neither agreed
or disagreed that the 3D effect in these models’ outputs are
realistic. This would suggest that outputs from this model are
not acceptable for use in VR. From this, we might infer that
models with a relative error of around 0.141 are generally not
accurate enough. Similarly, we could conclude that in order
to be of acceptable accuracy for VR content creation, a model
should have a relative error of around 0.115, at which point
the output is considered to be of similar quality as ground
truth data and provides a 3D effect that is about as realistic
as ground truth data. Interestingly, 0.115 REL may be the
point at which a model may perform better than data from a
Kinect sensor. Users rated the 3D effect of outputs from HU-
SENET higher more often than the ground truth (Figure 5) and
there are certainly examples of the estimated depth appearing
more realistic (Figure 1). However, we could not measure any
significant differences.

E. Limitations and Future Work

It is important to mention that we only tested a limited range
of depth estimation models that share a similar architecture and
training regime. In future work, it will be important to compare
a wider range of model architectures and model sizes to more
accurately assess the threshold of what is could be considered
‘good enough’ for VR content creation. The scale of the user
study was also limited as we only included four scenes from
a single dataset. Future work should look at including a wider
variety of scenes from different datasets to verify how well
the results generalise. Improving the quality of the 3D meshes
would help improve users’ perceived quality of the rendered
scenes, and provide an experience that would be closer to what
one would expect from applications with 3D content (e.g. One-
Shot 3D Photography [18]). It would also be of interest to run
a similar study in a VR environment where users can move
through the scenes themselves. This would likely change their
perception of how realistic the 3D photographs appear. One
final avenue for future work that comes to mind would be to
compare whether the user study results would be consistent if
the extracted depth data was used for 3D scene reconstruction.

VII. CONCLUSION

In this paper, we presented the first results on using a user-
centred approach for benchmarking monocular depth estima-
tion methods for VR content creation from single images. In
order to do so, we created a dataset that renders 3D meshes of
scenes from different viewpoints. We analysed these images
with image-based metrics and presented these images to users
in a user study to analyse if they see differences in quality.
Our experiments showed that these metrics can be used for
quality assessments of depth estimation methods with regard
to creating 3D content. However we also found that some
metrics, such as SSIM and PSNR are not always reliable
enough to find difference that would be obvious to human

observers. We hope that our work contributes to improving
the quality assessments and benchmarking of depth estimation
methods in particular with regard to VR content creation.

ACKNOWLEDGEMENTS

We gratefully acknowledge the support of the New Zealand
Marsden Council through Grant UOO1724.

REFERENCES

[1] S. Niklaus, L. Mai, J. Yang, and F. Liu, “3D Ken Burns Effect from a
Single Image,” ACM Trans. Graph., vol. 38, no. 6, p. 184, 2019.

[2] P. Hedman and J. Kopf, “Instant 3d photography,” ACM Transactions
on Graphics (TOG), vol. 37, no. 4, pp. 1–12, 2018.

[3] S. Zollmann, A. Dickson, and J. Ventura, “Casualvrvideos: Vr videos
from casual stationary videos,” in 26th ACM Symposium on Virtual
Reality Software and Technology, ser. VRST ’20. New York, NY,
USA: Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3385956.3422119

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., vol. 2016-Decem, 2016, pp. 770–778.

[5] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, “Deep ordinal
regression network for monocular depth estimation,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2018,
pp. 2002–2011.

[6] J. H. Lee, M.-K. Han, D. W. Ko, and I. H. Suh, “From big to small:
Multi-scale local planar guidance for monocular depth estimation,” arXiv
preprint arXiv:1907.10326, 2019.

[7] K. Lasinger, R. Ranftl, K. Schindler, and V. Koltun, “Towards Robust
Monocular Depth Estimation: Mixing Datasets for Zero-Shot Cross-
Dataset Transfer,” arXiv preprint arXiv:1907.01341, 2019.

[8] R. Ranftl, A. Bochkovskiy, and V. Koltun, “Vision transformers for dense
prediction,” arXiv preprint arXiv:2103.13413, 2021.

[9] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation
and support inference from RGBD images,” in Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),
vol. 7576 LNCS, no. PART 5, 2012, pp. 746–760.

[10] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The KITTI dataset,” Int. J. Rob. Res., vol. 32, no. 11, pp. 1231–1237,
2013.

[11] A. Dickson, A. Knott, and S. Zollmann, “User-centred Depth Estimation
Benchmarking for VR Content Creation from Single Images,” in Pacific
Graphics Short Papers, Posters, and Work-in-Progress Papers, S.-h. Lee,
S. Zollmann, M. Okabe, and B. Wuensche, Eds. The Eurographics
Association, 2021, p. to appear.

[12] C. Cadena, Y. Latif, and I. D. Reid, “Measuring the performance of
single image depth estimation methods,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2016, pp.
4150–4157.

[13] T. Koch, L. Liebel, F. Fraundorfer, and M. Korner, “Evaluation of cnn-
based single-image depth estimation methods,” in Proceedings of the
European Conference on Computer Vision (ECCV) Workshops, 2018,
pp. 0–0.

[14] J. Hu, M. Ozay, Y. Zhang, and T. Okatani, “Revisiting single image
depth estimation: Toward higher resolution maps with accurate object
boundaries,” in Proc. - 2019 IEEE Winter Conf. Appl. Comput. Vision,
WACV 2019, 2019, pp. 1043–1051.

[15] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural
similarity for image quality assessment,” in The Thrity-Seventh Asilomar
Conference on Signals, Systems & Computers, 2003, vol. 2. Ieee, 2003,
pp. 1398–1402.
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