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Figure 1: Our method provides free-viewpoint view synthesis from a single input panorama. The multi-cylinder image
representation consists of semi-transparent cylindrical layers at varying depths. We produce a multi-cylinder image by processing
a horizontally wrap-padded panorama in a convolutional neural network. Real-time view synthesis is achieved by projecting and
compositing the textured cylinders with over blending. (Figure inspired by [28].)

ABSTRACT

We investigate how real-time, 360� view synthesis can be achieved
on current virtual reality hardware from a single panoramic image
input. We introduce a light-weight method to automatically convert
a single panoramic input into a multi-cylinder image representation
that supports real-time, free-viewpoint view synthesis rendering for
virtual reality. We apply an existing convolutional neural network
trained on pinhole images to a cylindrical panorama with wrap
padding to ensure agreement between the left and right edges. The
network outputs a stack of semi-transparent panoramas at varying
depths which can be easily rendered and composited with over
blending. Quantitative experiments and a user study show that the
method produces convincing parallax and fewer artifacts than a
textured mesh representation.

Index Terms: Computing methodologies—Artificial intelligence—
Computer vision; Human-centered computing—Human computer
interaction (HCI); Computing methodologies—Computer graphics—
Graphics systems and interfaces—Virtual reality;

1 INTRODUCTION

Depth cues such as binocular stereo and motion parallax are impor-
tant aspects of immersion in virtual reality (VR). To achieve these
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effects when rendering captured imagery and video, a system must
be able to provide free-viewpoint view synthesis in real time.

Traditionally, view synthesis techniques require specialized multi-
camera hardware rigs to capture panoramic scenes [1, 4]. This
requirement can make panoramic view synthesis inaccessible, since
most consumers typically only have access to monocular smartphone
cameras.

Recent work explores more practical approaches to view synthesis
which only require a single consumer-grade camera for input [28,
29, 32]. For example, Tucker and Snavely created a multi-plane
image (MPI) model that generates novel views from a single camera
input, but is limited to a small field-of-view and single viewing
direction [28]. While this is an effective solution for view synthesis
in a single direction, it is not applicable to VR applications which
often require view synthesis in all directions.

Our approach builds upon this work by requiring only a single
panorama as input for novel panoramic view synthesis, which can
be easily captured with a smartphone camera or 360 camera and ren-
dered in a VR environment. Our model accepts cylindrical panora-
mas as input, which can be easily converted from equirectangular
projections and cube maps. This approach is thus compatible with
the vast amount of existing 360 imagery available on the Internet. In
this work, we address the challenges inherent in applying a single-
view MPI network to panoramic images, and present what is to
our knowledge the first work capable of producing a multi-cylinder
image (MCI) representation from a single panoramic input. We call
our approach PanoSynthVR. Quantitative experiments and a user
study show that our method produces convincing parallax and was
preferred by study participants over a textured mesh representation
using estimated depth maps.

Our specific contributions are as follows.

• We introduce a light-weight method to automatically and
quickly (on average 383.5 ms) produce a panoramic view syn-



thesis representation from a single panoramic image, which
can be easily captured with a smartphone or a consumer-grade
360 camera. Our method achieves real-time view synthesis
rendering on consumer VR headsets. The method can be run
on off-the-shelf computers/laptops.

• We introduce a pipeline for generating synthetic panoramas
and perspective views and assemble a dataset for evaluating
panoramic view synthesis methods.

• We introduce an improved evaluation methodology for
panoramic view synthesis with an unknown scaling factor,
which is more robust to outliers in the estimated disparity
maps.

• We evaluated our method and compared to baseline methods
in a user study to validate our approach.

• We share our code and data publicly1, including an opti-
mized WebXR renderer which is compatible with both desktop
browsers and VR headsets.

2 RELATED WORK

The goal of this work is to develop a practical technique to quickly
capture and reconstruct a 360� scene with free-viewpoint rendering
in a small region around the point of capture, using consumer hard-
ware. A panoramic image displays visual data in all directions but
does not allow for translational head movement. A simple extension
to provide a convincing illusion of presence in a panoramic scene in-
volves reconstructing or inferring a per-pixel panoramic depth map,
so that the scene can be re-projected with parallax. The depth map
can be estimated from multi-view stereo using a multi-camera rig,
but this makes the system inaccessible to consumers. An alternative
is to infer the depth map from a single panorama using a neural
network [12, 30, 35, 36].

Depth maps are not ideal for view synthesis, because holes will
appear in the depth map when projected to new viewpoints. One
solution is to make a mesh out of the depth map. The mesh can be
textured from input photographs using projective texture mapping.
View-dependent texture mapping [6, 7] enables higher-fidelity view
synthesis by blending between source images depending on the
viewing angle, to reproduce effects such as transparency and specular
reflections. For example, several approaches [2,3,17] combine depth
estimation or proxy geometry with flow-based blending to achieve
view-dependent effects, thus requiring many input images. Similarly
Huang et al. [10] estimate a sparse point cloud from a set of many
input panorama images, and perform view synthesis using a novel
warping technique. The SynSin method of Wiles et al. [31] uses a
neural network to produce both a depth map and a feature map which
can then be rendered to new viewpoints using a neural renderer.

Another improvement upon the per-pixel depth map is to use a
layered depth approach, where each pixel is associated with multiple
depth values [25]. Several recent methods [8, 9, 24] adopt layered
representations for 360 view synthesis, where the scene consists of
two or three layers and they use extrapolation and in-painting to
fill holes. However only the method of Serrano et al. [24] is able
to work with a single panoramic input image, the others require
many input images captured at different positions. Later layered
representations such as the multi-depth panorama [16] and layered
mesh representation [4] produce more accurate view synthesis results
but require a multi-camera rig.

Other previous methods explore sophisticated techniques to pro-
duce high-quality layers from a single input image [11,13,20,26] but
do not support panoramic scenes. These methods all use a similar
approach of expanding a measured or estimated depth map into a
few soft mesh layers with in-painting. In contrast, our MCI repre-
sentation has many soft cylindrical layers (32 in our work, although
even more layers would be beneficial).

1https://github.com/jonathanventura/PanoSynthVR

The flexibility of layered depth representations makes them ideal
for efficient storage and rendering, but also makes them difficult
to use as a target representation in an end-to-end learning pipeline.
An alternative is a multi-plane image (MPI) [34], where each layer
is a flat plane placed at a fixed depth from the capture point. The
regularity of the representation makes it suitable to be the output
of a convolutional neural network. Tucker and Snavely [28] intro-
duced a method to infer an MPI from a single perspective image.
An important limitation of the MPI representation is that the view
synthesis result degrades when the viewpoint moves too far from
the origin. Mildenhall et al. [18] established a quantitative relation-
ship between the translation magnitude and the required number
of layers in the MPI to produce sufficient sampling. Extensions of
the MPI address this issue by allowing for adaptive sampling of the
layer depths [14, 15]. Attal et al. [1] trained a neural network to
produce a multi-sphere image (MSI) from a stereoscopic panorama
input. This work is likely the closest to ours, since we use a neural
network to produce a multi-cylinder image (MCI) from an input
panorama; however, we use a monoscopic panoramic input, rather
than stereoscopic, thus requiring less specialized equipment.

Broxton et al. [4] find a bridge between both the layered depth
approach and multi-layer image approaches. They use deep learning
to produce a MSI from a multi-camera rig, and then compress the
MSI into a layered mesh representation for more efficient storage
and rendering. However, their approach is not directly transferable
to our setting, since they require a multi-camera rig.

A neural radiance field (NeRF) [19] supports a broader range of
viewpoints by representing the entire scene as a continuous color
and density field. To synthesize a viewpoint, the NeRF is sampled
at a dense set of points along each viewing ray, and the composite
color of each pixel is determined by integrating the samples along
the ray. While this approach enables high-fidelity view synthesis, it
has several limitations: it requires a dense set of input images ob-
serving the scene from many angles and positions; both creating and
rendering the NeRF are highly compute-intensive; and the learned
representation is specific to the scene it was trained on, and does not
generalize to new scenes. Yu et al. produce a NeRF from a single
input image [32], but their test scenes are limited to small objects
and their results do not match the high-quality of the original NeRF.
Li et al. [14] produce a planar NeRF from a single input image, but
don’t support 360 scenes.

To the best of our knowledge, only the method of Serrano et
al. [24] can produce view synthesis in a 360� scene with a single
panorama as input. All other methods either are limited to a small
field of view or require many images captured handheld or with a
specialized camera rig. While Serrano et al. [24] use an in-painted
layered depth representation, in this work, we explore how to adopt
the advantages of the MPI representation to 360 scenes with a single
panoramic image input. We considered comparing our approach
to Serrano et al. [24], but decided against it as their approach is
designed for dynamic 360 videos. Previous work by Bertel et al. [3]
used a comparison for 360 static OmniPhotos against Serrano by
creating a “static” 360 video from several static 360 images. How-
ever, they mentioned that “The resulting static scene does not play
to their method’s strength of propagating background information
behind dynamic objects.” Thus we decided against using this for
comparison as our work focuses on single images and not videos.

To summarize, we find three dominant representations for view
synthesis from a single image in the state-of-the-art: soft mesh lay-
ers [3, 11, 13, 20, 26, 31]; a multi-layer image [1, 4, 28, 34]; and a
continuous volumetric representation [14, 19, 32]. However, few
previous studies have considered how to adapt these representations
to a single panoramic input. In this work, we focus on the multi-
layer approach and explore the use of an MCI representation for
360� view synthesis from a single input panorama. While a com-
plete comparison between the various representations discussed here



would be interesting, we leave such a study for future work, since
each competing method needs to be carefully adapted for panoramic
input.

3 METHOD

The goal of our method is to produce free-viewpoint view synthesis
from a single panoramic input that is suitable for rendering in VR
headsets. Our method consists of two main steps. 1) We compute a
multi-cylinder image (MCI) representation that consists of a number
of semi-transparent cylindrical layers at varying depths (Figure 1). 2)
We perform real-time view synthesis by projecting and compositing
the cylindrical layers using over blending.

3.1 Multi-cylinder Image Representation

In the first step, our system converts a single panoramic image
into a multi-cylinder image (MCI) representation. It builds upon
the single-view multi-plane image (MPI) deep convolutional neural
network [28], which produces layered images using a U-Net style
architecture. The first seven convolutional blocks, which consist of
two convolutional layers each, are concatenated element-wise with
the following seven up-sampling blocks. Finally, two convolutional
blocks produce the layered image output. The model uses a three
part loss, accounting for similarity, smoothness and depth. The code
for the original MPI network is publicly available online2.

The output MPI consists of semi-transparent image layers at vary-
ing depths, which are easily rendered and composited with over
blending to achieve view synthesis. Each colored pixel is weighted
in importance by its alpha value, which leads to a soft appearance of
the rendered scene. While the results of MPI are great for interactive
desktop applications, they are limited by their directional field of
view. However, VR experiences require an immersive 360º represen-
tation with an omnidirectional field of view. A MCI representation
can provide such an omnidirectional view.

We originally tested applying the single-view MPI network to
each face of a cube map separately. However, this resulted in dis-
agreements between the cube map faces. To overcome this issue, we
decided to adopt a cylindrical panorama representation. Although
the cylindrical projection introduces distortions, locally it appears
similar to a pinhole image. However, we found the vertical seam
on the left and right edges of the panorama to still have inconsistent
disparity estimations (Figure 2).

To address this, we added horizontal wrap padding to the input
image. We copy the left half of the image and concatenate it to
the right side and visa versa. After processing the padded image
with the MCI network, we crop the padding from each layer. With
the addition of wrap padding, we no longer observe disagreement
across the seam, and the MPI network is able to produce a consistent
representation around the entire cylindrical panorama (Figure 2).

3.2 View Synthesis

Once the MCI representation is computed, we use view synthesis to
create novel views and render them within VR headsets such as the
Oculus Quest.

For the view synthesis, we create a 3D scene consisting of a series
of concentric cylindrical meshes. The radius of the cylinders equals
the corresponding depth of the layer and the height is set to be twice
the disparity value. We map each layer texture to the inside of a
cylinder and activate alpha blending to visually combine the layers.
By placing the virtual camera inside the innermost cylinder, our
renderer produces a realistic soft layer effect for an entire panoramic
scene. Stereo rendering computes the respective image for each eye.

2https://github.com/google-research/google-research/
tree/master/single_view_mpi

(a) Input panorama

(b) Predicted disparity without image padding

(c) Predicted disparity with 50% wrap padding

Figure 2: Adding horizontal wrap padding to the panorama elim-
inates discontinuities along the left and right edges of the image.
Here the disparity map has been shifted so that the original edges
are moved to the middle, to highlight the discontinuity when wrap
padding is not applied. Image from Matterport 3D dataset [5].

3.3 Implementation Details
PanoSynthVR adopts the neural network model and pre-trained
weights provided by Tucker and Snavely [28]. To prepare a
panorama for input, we first apply horizontal wrap padding. Feeding
this input through the model produces a set of 32 RGBa images
representing the layers of the MCI, from which the excess padding is
cropped. The depths of the layers are sampled uniformly in inverse
depth from a depth of 1 to 100.

A disparity map can be extracted from the MCI as a per-pixel
weighted average of the individual layer disparities. The weights are
computed by accumulating the alpha values in the layers.

We computed the average inference time over 100 trials be 383.5
ms. We define inference as the time to produce the 32 MCI layers
and the corresponding disparity map. The test was conducted using
an NVIDIA V100 GPU. It is also possible to run the full pipeline
on a standard laptop without GPU but processing time will increase
(e.g on average 24.1 seconds on MacBook Pro (15-inch, 2016)).

We implemented a renderer in WebXR to support interactive ren-
dering on both desktop, mobile phones, and VR headsets. We used

https://github.com/google-research/google-research/tree/master/single_view_mpi
https://github.com/google-research/google-research/tree/master/single_view_mpi


Figure 3: Examples of scene floor plans.

panoramas of size 2048⇥1024 in the WebXR viewer, as we found
this to provide the best balance between resolution and rendering
speed. The web-based renderer allows users to interact with scenes
in real time. An example is provided with the source code in the
supplementary material. We found that the renderer consistently
produces 30 fps while the user is in motion on an Oculus Quest 2.
Tethered headsets yield higher performance (60 fps via Oculus link).

4 QUALITATIVE AND QUANTITATIVE RESULTS

We implemented a textured mesh renderer as a baseline for compari-
son. To create the textured mesh, we extract the estimated disparity
map from our results and use it as a displacement map on a cylinder
geometry. For fair comparison and to ensure real-time rendering,
we restrict each representation to have the same number of vertices.
While we could have used a different and possibly more accurate
method to infer the depth map [30], this would have introduced a
confound in our experiments, since we would be comparing the out-
puts of two different systems. We wanted to isolate the comparison
between potential of the textured mesh and MCI representations for
view synthesis. Using the disparity map produced by our method
eliminated any differences due to the underlying scene representa-
tion, and focused the experiments on the differences between the
textured mesh and layered image rendering. (Existing 360 depth
map methods are also incompatible with our setup, since they require
spherical panoramas and we use cylindrical panoramas.)

We provide, a qualitative comparison between the MCI and
mesh renderers in Figure 4. In this comparison we test several
indoor panoramas from the Matterport3D dataset [5] and an outdoor
panorama from the web. The textured mesh result has noticeable ar-
tifacts such as texture “stretching” at the edges of objects. However,
the multi-cylinder image (MCI) is more blurry than the textured
mesh in some areas, which is an acknowledged issue in the single-
view multi-plane image (MPI) network output [28].

4.1 Synthetic Data Generation
To evaluate the perceptual and quantitative efficacy of PanoSynthVR,
we compare the similarity of multiple views from our multi-cylinder
image renderer and the benchmark mesh renderer against the ground
truth and the views captured from a mesh render at the same position.
We sample the ground truth snapshot from the same virtual 3D
scenes used to generate the panoramas. The mesh renderer maps
the original panorama texture onto a depth-based mesh synthesized
from the disparity map. We compare each of the three snapshots
using the SSIM, PSNR, LPIPS and MIFD metrics.

We use Habitat Sim [27] to load and extract images from syn-
thetic 3D environments. Then, we generate batches of high-quality
examples by extracting panoramas and snapshots from the scene.
The synthetic panoramas had a resolution of 2048⇥512.

We evaluate the model on 700 synthetically generated snapshots
from 26 scenes in the Replica, Habitat-Matterport 3D, and Gibson
datasets. These datasets are primarily composed of home interior
scenes. We grid sample viable positions from a top-down floorplan

of navigable areas to determine the optimal panorama placement.
The mask undergoes four iterations of binary erosion before extrac-
tion in order to distance all sampled positions from any obstacle
(Figure 3). At each position, the virtual camera captures a cylindrical
panorama and disparity map by taking an image for each column of
vertical pixels in the panorama map, averaging the center column of
pixels, and stitching together these columns into a complete image.
We pass each panorama through the PanoSynthVR layer generation
model to generate the cylindrical layers for the MCI renderer.

Because the MPI network was trained on structure-from-motion
(SfM) data, its output is only determined up to scale. Therefore, we
need to determine the unknown scaling factor s between the MCI
output and the ground truth 3D scene before synthesizing views.

Let Ps be a set of known 3D points (x,y,d) in the scene, where
x,y is the 2D location in the image and d is the depth of the point.
Let D̂s be the disparity map extracted from the MCI layers. Tucker
and Snavely [28] propose to find the scaling factor that minimizes
the mean log-squared error between the predicted disparity D̂s and
the point set Ps:

smean = exp

"
1

|Ps| Â
(x,y,d)2Ps

(ln D̂s(x,y)� ln(d�1))

#
. (1)

However, the mean is not robust to outliers, and thus this estimate
for the scaling factor is highly sensitive to errors and artifacts in the
disparity maps. We filter out images from the mean and median
datasets where the mean scaling estimate renders the scene too close
to the camera or pushes the scene past the camera.

As a more robust alternative, we propose to use the median instead
of the mean when estimating the scale factor:

smedian = exp
h
median(x,y,d)2Ps

(ln D̂s(x,y)� ln(d�1))
i
. (2)

We perform the scale factor calculation with mean and median
over all scenes in our dataset for comparison purposes. Then, we
generate a series of offset poses by sampling a random uniform
offset from the origin of each panorama. Two batches are created
for each scene, one with snapshots at a fixed distance of 10cm from
the panorama location, and the other at a fixed distance of 50cm. At
each offset location, we generate a perspective image (a snapshot) in
Habitat Sim to serve as the sources of truth for the render comparison.
The MCI and mesh renderers use the corresponding pose vectors to
get the predicted snapshots at each pose. Finally, we evaluate the
predicted offset snapshots by comparing the quality of the outputs
over several metrics.

4.2 Image Metrics
We compare the generated snapshots from the MCI model and mesh
based model (Mesh) against the ground truth snapshots with four
quantitative image similarity metrics: SSIM, PSNR, LPIPS, and
MIFD. We present the results of these comparisons in Table 1 for
smean and Table 2 for smedian.

SSIM and PSNR are metrics that are widely used for comparing
images and compare statistics calculated directly from the pixel
values. Learned Perceptual Image Patch Similarity (LPIPS) [33] is
a metric that has gained popularity recently. It is a distance metric
that works by comparing the feature maps extracted with a deep
convolutional neural network from a pair of images.

Mean Image Feature Distance (MIFD) is a geometric metric simi-
lar to reprojection errors commonly used in image reconstruction. It
works by measuring the average Euclidean distance between SIFT
features that have been matched between a pair of images, with
candidate matches being filtered with Lowe’s ratio test. We only
use measurements where there are at least ten matches to ensure
robustness in the results. One caveat with this metric is that it does



Figure 4: Comparison of a baseline mesh model (inset bottom) and our proposed MCI representation (inset top). First two images are from
Matterport3D dataset [5]; Right image by Jürgen Matern (Creative Commons license).

Table 1: Image metrics by distance and method using smean. Best
results for a given distance are italicized and the best overall results
are in bold.

Higher is Better " Lower is Better #
Distance Method SSIM PSNR LPIPS MIFD

10 cm MCI 0.725 22.4 0.330 18.3
Mesh 0.700 21.9 0.281 11.9

50 cm MCI 0.644 18.4 0.477 58.9
Mesh 0.594 17.1 0.470 42.0

All MCI 0.685 20.4 0.404 38.6
Mesh 0.647 19.5 0.375 27.0

Table 2: Image metrics by distance and method using smedian.

Higher is Better " Lower is Better #
Distance Method SSIM PSNR LPIPS MIFD

10 cm MCI 0.804 25.2 0.258 13.8
Mesh 0.795 25.0 0.192 8.8

50 cm MCI 0.708 20.6 0.402 46.5
Mesh 0.688 19.9 0.362 30.3

All MCI 0.756 22.9 0.330 30.1
Mesh 0.742 22.5 0.277 19.6

not produce a score if there are zero matching features (due to either
the two input images being too different or producing an insufficient
number of SIFT features).

4.3 Discussion
Our model outperforms mesh renders for the SSIM and PSNR met-
rics, likely due to the blurring effect of the semitransparent layers in
comparison to the sharp tesselations of the mesh. While the mesh
renderer is highly sensitive to error in the disparity predictions be-
tween layers, the blending effects of the MCI provide a more robust
representation that averages individual pixel values to a plausible
output.

However, the mesh output outperforms the MCI output for both
LPIPS and MIFD. In the case of LPIPS, the clarity of the mesh
output likely produces a higher correlation between the actual and
predicted image patches. The convolutions of the LPIPS model can
find more similarities in the sharper images than the soft images.
This is indicative of the limitations of the multi-cylinder image
(MCI) approach, in which views get progressively blurrier as the
virtual camera approaches the wall of the cylinder.

The texture captured at a single viewpoint cannot supply enough
visual information to produce a convincing image at large offsets.
When the user approaches the walls of the inner cylinder, the angle of
incidence with each MCI cylinder is too large which causes spatially

distinct features to blur together. This occurs in part because our
datasets push the MCI representation past its recommended limits.
For example, our 10cm dataset has a maximum disparity of 75 pixels,
while the recommended disparity limit is 32 [18]. Additionally, the
spaces between each cylinder become visible at the top and bottom of
the viewport, leading to a banding effect. The experimental results
reflect these issues, with the 50cm offset images having inferior
scores to the test images in the 10cm offset dataset. Increasing
the number of cylinders in the MCI would likely ameliorate these
aberrations.

The accuracy improvements of using median over mean for cal-
culating sigma scale differences between disparity maps is worth
noting. The outliers in disparity differences may have a large effect
on the effective representation of the scene. The use of median
reduces this effect and produces more convincing scene imagery.
Predicting the scale of a scene in an unsupervised environment poses
a challenge that would likely improve with more accurate depth
estimation trained specifically on cylindrical panoramas.

5 USER STUDY

As we found conflicting results between SSIM/PSNR and
LPIPS/MIFD, we were interested in measuring what these con-
trasting measurements mean for actual users. Thus we performed a
user study to gain more insights. In particular, we were interested in
how users perceive the difference between the MCI and the Depth-
based renderings as the image metrics can only measure differences
in the rendered images but not how this affects the users within an
VR environment. Preliminary feedback from test users showed that
users experienced less distortions in the MCI results compared to
the textured mesh (Mesh): e.g. mentioning “less wrinkles in the
window areas.” For the majority of scenes, users rated MCI as their
preferred option when comparing to the textured mesh. However,
they also mentioned the reduced resolution of the MCI compared to
the textured mesh.

5.1 Study Design
Based on the initial feedback, we designed a within-subject study to
investigate if there are any effects on presence and perceived quality
when using PanoSynthVR (MCI). Similar to the work by Serrano et
al., we used a plain 360 panorama (Plain) as the reference condition
[24]. In addition, we used a textured mesh with an estimated depth
model (Depth) to investigate the difference in image metrics more
in detail from a user perspective.

For this purpose, we postulated four hypotheses.

• H1: MCI creates a higher sense of presence compared to using
a plain panorama or textured mesh (depth map).

• H2: MCI improves depth perception compared to using a plain
360 panorama.

• H3: MCI has a similar visual quality as a plain panorama
(Plain) and shows less artifacts than using a textured mesh with
the estimated depth map (Depth).



• H4: In a direct comparison, participants would prefer MCI
over the textured mesh (Depth).

In the first part of the study, we use the IPQ, a questionnaire
for analyzing presence [21], and additional questions about depth
perception and quality. The dependent variables are the IPQ score,
the perceived depth perception, the perceived visual quality and the
perceived amount of artifacts. The independent variable is the ren-
dering method with three conditions: Plain, Depth and MCI. In the
second part of the study, we captured the preference of participants
when directly comparing the Depth and the MCI condition using
a two choice question “which one of the rendering options do you
prefer?”

5.2 Apparatus
We use an Oculus Quest 2 that is connected to a desktop computer
via Oculus Link. The rendering is done on the desktop computer
in Chrome using a WebXR implementation. We decided to use
PC-powered renderings via Oculus Link to maintain high rendering
frame rates while being able to supervise the experiment, logging
information (such as conditions and scenes shown) and receive feed-
back on what the participants are witnessing. The shown conditions
and scenes are controlled by the study operator using the Oculus
controllers.

5.3 Procedure
Participants were initially presented with a basic questionnaire for
demographic purposes. These include non-identifiable properties
such as gender, age, ethnicity, and whether they have prior VR
experience. After ensuring the participants were comfortable in a VR
headset, they started the first part of the experiment, where they then
experienced a rendering from each of the rendering conditions (Plain,
Depth, MCI) in randomized order (Latin square) for three different
randomized scenes per condition. In total, participants experienced
nine different VR scenes with the randomized conditions and were
asked questions based on the IPQ presence questionnaire as well
as the depth perception and visual quality of the scenes. Presence
scores were obtained using the seven-point Likert scale for 14 items
of the IPQ, and Quality scores were obtained using 3 questions about
sense of depth, visual quality and the presence of visual artifacts
using a 7 Likert Scale (Low to High).

In the second part of the experiment, participants were asked to
observe the same (randomized) scene using two conditions: Depth
and MCI and to perform a preference ranking. Participants were
given as much time as they needed and were able to switch between
the two conditions as often as they needed before making a decision.

Figure 5: Overall Presence as captured by the IPQ questionnaire
with significant difference between ”Depth” and ”MCI”.

The study was approved by the University of Otago Human Ethics
Committee (reference number D21/103). Participants were assured
that if they decide not to take part in the project that this would result
into no disadvantage to themselves. They were also instructed that
they could stop at any time if they felt uncomfortable or experienced
motion sickness. No personally identifiable data is collected beyond
those included in the demographic questionnaire, and every effort
was be made to ensure that no data can be linked to any individual
participant. We also ensured health and safety standards by cleaning
and disinfecting the headset after each user and using disposable
hygiene covers3 in light of COVID-19.

5.4 Participants
We recruited participants via announcements in university lectures,
flyers and word-to-mouth. We invited 18 participants (9 male, 9
female, mean age = 26.78±7.65 years ranging from 20-45) to take
part in our study. Each study took approximately half an hour.
Participants received either a coffee voucher or a sweet or healthy
snack as acknowledgment for their time. We had to exclude the
results of one participant due to a technical issue that showed one of
the three conditions twice and another condition not at all in the first
part of the study. The issue was discovered when checking the log
files after the experiment was finished.

5.5 Results
We analyzed the results for the IPQ and the ratings with regards to
depth perception, visual quality and the presence of visual artifacts
using R.

5.5.1 IPQ

We calculated the overall IPQ presence score [21–23] (Figure 5) as
well as the IPQ subscale scores. Since the IPQ scores are captured on
ordinal scales, we used non-parametric tests for statistical analysis
(Friedman and Wilcoxon (holm) as posthoc test). According to the
IPQ data analysis instructions4 we converted the IPQ scales to a
range from 0 - 6.

Descriptive statistics show that the Plain method (mean = 3.23,
std = 0.95, median = 3.14) and Depth method (mean = 3.24, std =
0.82, median = 3.36 ) have similar medians for the overall presence
score, while the median for MCI is larger (mean = 3.72, std =
0.64, median = 3.64). Using the Friedman test, we measured a
statistically significant difference in the IPQ scores depending on
method, c2(2) = 6.969, p = 0.031. The result is significant at p <
.05. We then used a Wilcoxon (with holm correction) for post-hoc
analysis that indicated a significant difference between Depth and
MCI (p = 0.044). This indicates that presence score is significantly
higher for MCI compared to Depth. We did not measure a significant
difference between Plain and MCI (p = 0.118) nor between Plain
and Depth (p = 0.451). The Wilcoxon effect size r indicates small
to large effect sizes (Plain-Depth r = 0.179 (small), Plain-MCI r =
0.471 (moderate) and Depth-MCI r= 0.597 (large)).

We also analyzed the IPQ subscales (General presence (G), Spa-
tial presence (SP), Involvement (INV) and Realism (REAL)) for a
more detailed analysis (Figure 6). We did not find a significant
effect of rendering condition on G (c2(2) = 1.1915, p-value =
0.551), nor on SP (c2(2) = 3.966, p-value = 0.1376), nor on INV
(c2(2) = 1.548 p-value = 0.461), nor on REAL (c2(2) = 4.557,
p-value = 0.102).

5.5.2 Depth perception and Quality

For statistical analysis of depth perception and quality scores, we
once again used non-parametric tests (Friedman and Wilcoxon
(holm) as post hoc test) to work with Likert scales. While the

3https://vrcover.com/about/
4http://www.igroup.org/pq/ipq/data.php

https://vrcover.com/about/
http://www.igroup.org/pq/ipq/data.php


Figure 6: Presence subscales as captured by the IPQ questionnaire. General presence (G), Spatial presence (SP), Involvement (INV) and
Realism (REAL)). We did not find any significant effects of rendering condition on any of the subscales.

Figure 7: Rating of depth perception using a Likert scale (low (1)
to high (7)).

ratings for the depth perception (Figure 7) were in average higher
for the Depth and the MCI condition (Plain: mean = 3.88, std = 1.93,
median = 5, Depth: mean = 4.47 std = 1.18, median = 5, MCI: mean
= 4.71 std = 1.49, median = 5), we did not measure a significant
effect of rendering mode on depth perception (Friedman chi-squared
= 2.4151, df = 2, p-value = 0.299). Analysis of the Wilcoxon ef-
fect size r indicates a small effect size between Depth and MCI (r
= 0.205) and moderate effect sizes between Plain and Depth (r =
0.312) and between Plain and MCI (r = 0.381).

Figure 8: Likert scale results (low (1) to high (7)) for visual quality
and amount of visual artifacts. Left) Visual quality. Right) Rating on
amount of visual artifacts. We found significant effects of rendering
method on visual quality and and visual artifacts.

For the visual quality (Figure 8, Left), we found a significant
effect of rendering mode on visual quality (chi-squared = 13.451,
df = 2, p-value = 0.001). Post hoc analysis showed a significant
difference (p=0.006) between Plain (mean = 4.41 std = 1.06 ) and
Depth (mean = 3.24, std = 1.09) with a decrease in visual quality
for Depth. We could not find a significant difference between Plain
and MCI (mean = 4.18, std = 1.19) (p = 0.4) nor between Depth and
MCI (p = 0.077). The Wilcoxon effect size r indicates small to large
effect sizes (Plain-Depth: r = 0.812 (large), Plain-MCI: r = 0.187
(small) and Depth-MCI: r = 0.555 (large)).

Questions regarding the amount of artifacts (Figure 8, Right) indi-
cated a significant effect of rendering mode (Friedman chi-squared
= 10.561, df = 2, p-value = 0.005). Post hoc testing with Wilcoxon
(holm correction) indicated significant difference (p = 0.013) be-
tween Plain (mean = 3.12, std = 1.76 ) and Depth (mean = 4.94, std =
1.52), as well as a significant difference (p = 0.0089) between Depth
and MCI (mean = 3.12, std = 1.58) with Depth showing a significant
higher amount of visible artifacts. We could not find a significant
difference between Plain and MPI (p = 0.94). The Wilcoxon effect
size r indicates small to large effect sizes (Plain-Depth r = 0.702
(large), Plain-MCI r=0.00585 (small) and Depth-MCI r = 0.723
(large)).

5.5.3 Preference

The results for the preference ranking show that the majority of
participants prefer the MCI option (88% vs 12%) in a direct compar-
ison. For analyzing the results, we use a binomial test. The results
of the binomial test indicate the preference for MCI is statistically
significant (p < 0.001).

5.6 Discussion
Within our study we were able to show that our method provides a
significantly higher overall presence compared to a textured mesh
(Depth) partly confirming our hypothesis H1. It is interesting to
note that the standard deviation of the MCI condition was smaller
compared to the other conditions indicating that participants have
less variation in their opinions on the presence questionnaires. While
we did not find a significant difference between Plain and MCI, the
moderate effect size between both indicates that there might an
effect that was not detected with our sample size and requires further
studies.

While the ratings for the depth perception were in average highest
for the MCI condition, we did not measure a significant effect of
rendering method on depth perception. Thus we need to reject H2.
However, we recommend further study on this aspect as moderate
effect sizes as computed by Wilcoxon r indicate that there might be
an effect, but our sample size was too small.

Our results showed that there was a significant difference in visual
quality between Plain and Depth, but we could not find a signifi-



Figure 9: Comparison of generated depth maps and view synthesis at various resolutions. At lower resolutions, the depth map lacks detail,
but at higher resolutions, the depth map lacks global coherence and artifacts are introduced. Left: Input image (cropped to fit page) with
detail region outlined in yellow. Right: Generated depth maps, depth map detail, and view synthesis detail, at 512⇥1024 (top), 1024⇥2048
(middle), and 2048⇥4096 (bottom) input image resolution. Image from Matterport3D dataset [5].

cant difference between Plain and MCI. There was also just a small
effect size between Plain and MCI. These results suggest that we
can achieve a similar visual quality as the plain panorama while still
providing a depth effect. Participants also found significantly fewer
artifacts in MCI and in Plain than in the mesh renderer (Depth) con-
firming our hypothesis H3. The soft MCI layer approach maintains
the structure of complex objects in the image, while mesh rendering
struggles with curved and multifaceted surfaces. The MCI system
scores comparably with the plain texture renderer, showing that the
MCI model effectively maintains the quality of the image around
the panoramic origin point.

Test subjects also reported shortcomings of the MCI model, pri-
marily that the environment appeared to have lower resolution than
that of the mesh and plain renders. When a user approaches the
innermost cylinder, the layered representation lacks sufficient data
to provide an accurate representation of the scene. This reduced the
overall realism and was likely a factor in our model’s score distri-
bution for that category. Higher resolution textures or additional
intermediary layers may allow the MCI model to handle large offsets
gracefully.

The second part of our study showed that the participants pre-
ferred the MCI condition when directly comparing it with the Depth
condition for the same scene. This confirms our fourth hypothesis
H4 and shows that participants see an advantage of using MCI.

6 CONCLUSIONS AND FUTURE WORK

In this work, we introduced the MCI representation for real-time, im-
mersive free-viewpoint view synthesis rendering, and demonstrated
an initial pipeline to extract an MCI from a single input panorama.
We developed an evaluation pipeline which produced synthetically
generated panoramas as input to our MCI model and mesh renderer.
The results provided the materials for our quantitative analysis, in
which our MCI renderer outperformed a textured mesh in terms
of the standard PSNR and SSIM metrics. However, our method
was less effective in terms of perceptual metrics, likely due to occa-
sional blurriness and ghosting in the renderings. Users of our system
were more distracted by the visual artifacts in the mesh renderings

than blurriness in the MCI renderings. This could indicate that the
perceptual image metrics are not able to capture these differences
effectively and it would be interesting to investigate these aspects
more in detail in future work. Finally, we conducted a user study
that showed that our proposed technique achieves higher levels of
presence and visual quality compared to a textured mesh. As Ser-
rano et al. highlighted in their work [24], there are many studies that
assess presence when exploring synthetic virtual reality content, but
there is only limited research on the experience of 360 footage in
VR headset. We hope that we contribute to this research direction
with our study and advance the field with our findings.

Because of the limited number of layers in the MCI, our current
model works best when the user is less than 50cm from the center
of the scene. Thus our current model is best-suited for a standing or
sitting user who is looking around a scene but not walking around
in it. While this lowers the barrier to entry for creating an immer-
sive scenes, users are still limited to a small radius of movement.
Future versions of our technique with more MCI layers and higher-
resolution imagery would allow for a larger radius of travel. Adding
more layers does come at the cost of performance, the rendered
image is a composite of all layers in the MCI.

While we applied an existing network trained on perspective
images, in future work we plan to explore training or fine-tuning
the network on cylindrical images, to achieve more accurate and
higher-resolution output. As can be seen in Figure 9, our current
neural network works best at a small image resolution, similar to
the images it was trained on, but higher resolutions are necessary to
support comfortable viewing in a VR headset.
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