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Abstract—Augmented Reality (AR) applications require robust
and accurate localization and tracking of the user or the user’s
device. This is important to allow for seamless integration of 3D
digital content into the real 3D environment. Robust localization
is still a challenge in large-scale dynamic environments such as
large sports venues. The purpose of our research is to investigate
localization methods that are suitable for dynamic large-scale
environments. For this purpose, we explored and evaluated the
performance of state-of-the-art methods such as the 6D Camera
Localization via 3D Surface Regression (DSAC++) and Expert
Sample Consensus (ESAC) method.

To investigate the feasibility of these methods, we trained
DSAC++ and ESAC using a large-scale stadium image dataset
captured when the stadium was empty and accessible for capture.
We then used the trained systems for analyzing their robustness
and accuracy for a set of different camera sequences in a stadium
environment with different levels of crowdedness. Through our
experiments, we found that both DSAC++ and ESAC produce
acceptable results in an empty stadium. However, the experiments
show that the DSAC++ localization robustness decreases for the
semi-crowded dataset (75%) and completely struggles (0%) to
localize the camera when the environment has a lot of dynamic
elements such as a crowd. Our experiments show that ESAC
trained on an empty stadium with four experts performs already
better on the crowded dataset (localization success rate 87.5%)
and further improves when trained with ten experts (93.75%).
Our results indicate that ESAC trained on an empty environment
can be used for localization in a large-scale dynamic environment.

I. INTRODUCTION

Augmented Reality (AR) describes interfaces that embed
digital content into the field of view of users. On-site sports
spectating has the potential to benefit from this technology
as it can help to increase user engagement and spectators are
already used to video footage overlaid with graphical elements
from broadcast [1]. However, embedding game-related graph-
ical elements into a live view of an on-site spectator poses
additional challenges compared to embedding such content
into video footage for broadcasting during a postproduction
pipeline. Broadcast cameras are often calibrated with time-
consuming methods [2] and often make certain assumptions
about where the cameras are placed within the stadium en-
vironment. Localizing and tracking an AR capable device is
a challenging task and difficult to solve because spectators
can be located in almost all areas and the mobile device’s
position is not always static. Even though users are often
seated and limited in their movements. Therefore, it is more
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Fig. 1. Using the results of the Expert Sample Consensus for Augmented
Reality visualization in a stadium overlaying a stadium model.

than challenging to implement mobile AR systems in such
environments.

The main challenge is that for on-site sports spectating we
cannot rely on expensive setups with pre-calibrated cameras,
as we can only use the on-site spectators devices (often mo-
bile phones). While commercial AR applications are already
reliable for small-scale application scenarios such as within a
living room to place the furniture1, these solutions are often
not applicaple for large-scale environments.

For dynamic large-scale environments applications remain
limited with one of the key factors being the challenges
around localizing as well as tracking the user. Dynamic scene
elements might disturb the feature detection often used for
localization and tracking, and in large crowded environments
users might not be able to acquire a wide baseline as often
required for state-of-the-art localization and tracking [3]. In
addition, 3D data such as point clouds required for some
localization methods [4] often can only be captured before an
event as it requires a good coverage of the complete venue.
This creates a discrepancy between the 3D model used for
localization and the current appearance and structure of the
stadium environment, making a successful localization more
difficult.

Our research aims to address these challenges and exploring
the feasibility of state-of-the-art localization methods in a
stadium environment for AR sports spectating. In particular,
we focus on how robust localization methods are with regards
to the factor of crowdedness. Our main goal is to provide
precise localization in a large dynamic stadium environment.

1IKEA Place : https://apps.apple.com/us/app/ikea-place/id1279244498
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Our initial experiments identified Expert Sample Consensus
(ESAC) [5] as a promising candidate for localizing images in
a large-scale dynamic stadium environment. ESAC is based on
a machine learning approach similar to a Mixture of Experts
(MoE) [6]. MoE uses a combination of different ‘experts’,
and each expert is specialized in a specific domain. A sup-
plementary gating network is then responsible for deciding
the relevancy of a given input and decides which experts
are responsible for a given input. The final prediction is
subjective based on the selected experts’ outcome. In order
to evaluate the performance of ESAC we performed different
experiments to measure how well the ESAC method works
on stadium images. The different methods were applied to a
range of images, which are divided into empty, semi-dynamic
and completely dynamic stadium environments, in order to
evaluate their performance.

Our work aims to contribute to the foundations of realistic
AR experience for large outdoor environments (such as sports
stadiums) and providing a sense of real and interactive AR
experiences to on-site sports sites for mobile phones and head-
worn AR displays. Our contributions include demonstrating
the feasibility of ESAC in dynamic large-scale sports venues
using mobile phone footage from a sports spectator perspective
and investigating the factor of crowdedness for AR localiza-
tion. In addition, we created a dataset for providing ground
truth in a large-scale stadium environment.

II. BACKGROUND

Previous work identified challenges in AR research [7] [8],
one of the key areas being accurate tracking and localization.
In particular, for using AR on-site for live sports events
these challenges increase due to the dynamic and large-scale
environment. AR is a technology that aims to integrate virtual
objects into the real world in real-time. An AR interface
should perform seamless incorporation of virtual objects with
the real environment. The virtual objects should appear to be
fixed in real-world space or attached to real-world objects.
This requires the continuous computation of user’s location.
Often this achieved by using a combination of localization and
tracking [9]. Localization thereby often refers to the initial
computation of the user’s point of view and viewing direction
in a global coordinate system. In our sports spectating use
case, this is coordinate system of a 3D model of the stadium
environment. Such a 3D model can then be used to place
3D content in the virtual environment for authoring using
game engines such as Unity2. Localizing the user with respect
to the world coordinate system of a 3D model allows us to
then place virtual 3D content at the same position in the real
world by overlaying this onto the video image (e.g. in video-
see-through AR) [10]. In order to do this successfully, the
localization step needs to be accurately performed. Once a
global spatial relationship is established via the localization
step, a continuous tracking step will be performed. While
there are several solutions that have been proposed to solve

2https://unity.com

localization and tracking in small scale environment [9] and
indoor environments [7] [11], localization and tracking for
AR in large dynamic areas such as sports is still challenging.
Feigl et al. recently evaluated the performance of state-of-
the-art commercial AR SDKs. Their results indicate that AR
systems do not perform well in these larger environment [12].
In addition, a lot of AR solutions use fiducial registration
markers, which restrict an application to a specific position
or area.

Some of the early methods for localization and tacking
for AR have been investigated in controlled environments
or with costly infrastructure [13] [14] [15]. For instance,
Livingston et al. investigated magnetic trackers [14]. These
systems rely on numerous technologies and the installation of
multiple cameras [15]. Ribo et al. used an approach based
on 3D interaction devices for motion tracking and camera
localization in a specific location with the installation of room-
mounted cameras [13]. These existing methods are based on
complex infrastructure and special hardware; such as multiple
cameras, depth sensors, or a bespoke tracking system. Such
an infrastructure is cost-intensive and depth sensors might not
work at a certain distance.

As we have seen, none of the currently available methods
tackle the localization challenge in a dynamic large-scale scene
using AR on mobile devices. In this work, we aim to solve
some of these challenges and to demonstrate an effective and
reliable method for localizing camera images for providing
unconstrained AR visualization on smartphones for larger
dynamic event sites. The proposed methodology focuses on
localization in large environments (i.e. stadiums), but also
prepares for integrating this with a continuous tracking using
state-of-the-art methods such as ARKit3 or ARCore.4

III. LOCALIZATION METHODS FOR AR SPECTATING

We identified a number of methods as possible candidates
for localizing users within a stadium environment by reviewing
the state-of-the-art. These include ARKit, ARCore, and SLAM
as well as two machine learning based approaches. ARKit and
ARCore are promising as they provide an integrated tracking
technology, merging information from cameras and sensors.
However, they rely on fiducial image targets or sensor input
such as GPS which is not always accessible in a stadium
environment or might not be accurate enough. Simultaneous
Localization And Mapping (SLAM) [16], which is one of the
most known methods for tracking and localization in unknown
environments is also not suitable to use in a large environment.
In particular in the sports spectating scenario, the user is often
relatively stationary while sitting and standing in a particular
location. Thus SLAM [16] initialization can be challenging
as it requires a certain baseline for localization [3]. Due to
the above mentioned challenges, we further explored machine
learning based methods; such as 6D Camera Localization via
3D Surface Regression [17] (DSAC++) and Expert Sample

3https://developer.apple.com/augmented-reality/
4https://developers.google.com/ar
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Fig. 2. Top view of the stadium structure-from-motion 3D model with the 3D reference points used for calculating the reprojection errors.

Consensus Applied to Camera Re-Localization (ESAC) [5].
DSAC++ and ESAC are scene coordinate regression methods
that use neural networks for training with a precaptured envi-
ronment. ESAC refers to an ensemble of experts and is trained
using a 3D representation of the environment and camera
images that provide pose information. During localization
ESAC works on a single image input and fits an absolute
6D camera pose to it. Thereby, it uses a strategy based
on a mixture of experts which decompose large scenes into
a smaller scene to train the expert for each scene. ESAC
distributes the model input among all the trained experts.
Training ESAC with a single expert is equivalent to DSAC++
[17] and both of the methods have been shown to work
successfully in large mostly static scenes (such as urban scenes
showing different buildings).

In preliminary tests with our dataset of an empty stadium
environment, we identified DSAC++ and ESAC as promising
candidates for solving the localization problem in a stadium
environment as we were able to compute camera poses with
a sufficient quality (Figure 1). However, it was unclear how
well these methods would perform when being trained on an
empty environment but tested with dynamic environments. By
answering this question, we are able to also determine the
feasibility of these methods for AR sports spectating as large
image datasets can only be captured before a game and suitable
methods still need to perform well with a high amount of
crowdedness.

IV. EXPERIMENT

We evaluate the performance of the DSAC++ and ESAC
methods on our stadium dataset. The dataset contains images
that have been captured in an empty stadium, in a semi-
crowded stadium and a crowded stadium during a live Rugby
game. In this experiment we analyzed how the camera local-
ization methods perform under different levels of crowdedness.
As it is difficult to capture ground-truth data for camera poses

TABLE I
AVERAGE TRAINING TIME FOR EACH METHOD.

Method Avg Time (h)
DSAC++ (One expert) 22 hrs, 17 minute
ESAC (Four experts) 76 hrs, 9 minutes
ESAC (Ten experts) 181 hrs, 58 minutes

of mobile phone video footage, we use the reprojection error
as a measurement to analyzing robustness and accuracy.

A. System

For all training and testing, we used a desktop computer
with an Intel® Core™ i9-9900KF CPU @ 3.60GHz with 8
hyper-threaded cores, a GeForce RTX 2080 graphic card, and
32 GB of RAM. The computer runs Ubuntu version 18.04.5
LTS (64-bit). While this system setup is not suitable for mobile
AR, it allows benchmarking on a large number of images.
The system also runs a server application to provide pose data
based on a single image input. Mobile AR applications can
connect to the server to access pose data on-site, but details
of this client-server system are beyond the scope of this paper.

B. Training

We train three different systems, 1) DSAC++ (one expert),
2) ESAC (four experts) and 3) ESAC (ten experts). The
goal is to analyze if the number of experts has an impact
on the performance for different levels of crowdedness. For
training the different networks, we used the same images
dataset captured in the empty stadium. The training data set
was captured as part of the ARSpectator project [3], [10]. The
data set was captured with Canon camera model (Canon EOS
650D), and consists of 895 stadium RGB images rescaled to
a resolution of 720 × 480 pixels in different locations. The
camera has been calibrated using a checkerboard and Zhang’s
algorithm [18]. We computed reference camera pose data using



Fig. 3. Annotated sample image from the empty, semi-crowded, and crowded test dataset. Yellow points show the 2D annotations and blue points show the
projected 2D points.

Colmap5 when computing the SfM model. We use the SfM
model with reference camera poses as input to training the
three systems.

1) DSAC++ (One expert): [17] Firstly, we performed the
end-to-end training of the rugby data-set with one expert. The
gating network is trained with 80k iterations and only one
expert with 160k iterations and then end-to-end training is
performed using 30k iterations. The total training duration for
one expert was 22 hrs, 17 minutes (Table I).

2) ESAC (Four Experts): The training of four experts is
performed on using 1000k iterations for each expert and the
refining process of each expert is performed for additional
1000k iterations. The gating network is trained individually
with 100k iterations and the end-to-end training for 50k
iterations was performed. The complete training process took
76 hrs, 9 minutes to finish (Table I).

3) ESAC (Ten Experts): We performed end-to-end training
of the rugby data-set with ten experts and each expert is trained
with 1000k iterations. In addition, each expert is refined with
further 1000k iterations. Furthermore, we trained a gating
network with 100k iterations and then we perform the trained
of the ensemble of experts end-to-end for 50k iterations. The
training duration for computation was 7 days, 13 hours, 58
minutes (181 hrs, 58 min) (Table I).

5https://colmap.github.io

Fig. 4. Success rate in percent for the empty, semi-crowded and the crowded
stadium image dataset using 1, 4 and 10 experts. Localization success is
defined as having less than 1.5% reprojection error.

TABLE II
AVERAGE COMPUTATION TIME PER IMAGE FOR EACH DATASET.

Empty Stadium Semi-crowded Crowded
Method Avg Time (s) Avg Time (s) Avg Time (s)

DSAC++ (1 expert) 0.07 0.17 0.62
ESAC (4 experts) 0.11 0.13 0.67
ESAC (10 experts) 0.15 0.25 1.18

TABLE III
MEAN REPROJECTION ERRORS AND STANDARD DEVIATIONS FOR EACH

DATASET USING ONE, FOUR AND TEN EXPERTS.

Empty Stadium Semi-crowded Crowded
Method Mean (Std) Mean (Std) Mean (Std)

DSAC++ (1 expert) 13.77(9.28) 22.38 (10.37) 623.34(294.87)
ESAC (4 experts) 6.57 (1.38) 10.77 (4.88) 16.92(14.45)
ESAC (10 experts) 6.33 (1.5) 9.14 (5.89) 11.63 (8.81)

We can see that the number of experts has an impact on
training times. While training a system with one expert takes
under a day, ten experts may take about a week, a time factor
that needs to be taken into account for the preparation time
applying this at different venues.

C. Testing

We analyze the accuracy of the different networks using
different image datasets reflecting different levels of crowd-
edness: empty, semi-crowded, and a crowded stadium. We
visualize all experimental results in the 3D environment (Fig-
ure 6) and compute robustness and accuracy based on the
reprojection errors for each image.

1) Datasets: We captured three image datasets in different
stadium environments. The first dataset captured an empty
stadium similar to the images used for training the systems
(Figure 3 Left). These images were captured as single pho-
tographs using the Canon EOS 650D. The second dataset
was captured in video mode with a mobile phone (OnePlus6
with 1920×1080 pixel resolution) in a semi-crowded stadium
after a rugby game. The semi-crowded dataset covers a small
number of spectators in the stands and players on the field
(Figure 3 Middle). The third dataset was also captured with
the OnePlus6 in video mode and captured a crowded stadium
during a rugby game. The mobile sequences were recorded
during different times in the stadium and with different lighting
conditions. Data was captured both during and after the game,

https://colmap.github.io


Fig. 5. Mean reprojection error in pixels for the empty, semi-crowded and the crowded stadium image dataset with one standard deviation error bars. Left:
Complete results. Right: Selection of results excluding data for 1 expert for the crowded dataset for better comparison.

providing semi-crowded and crowded dynamic contents such
as spectators and players in the stadium. For each of of the
three datasets we manually selected 16 images with a variation
of viewing angles, illumination, and appearance. All cameras
were calibrated beforehand using Zhang’s algorithm [18].

2) Localization: For each image in the three datasets, we
use the three different localization methods to compute camera
poses. DSAC++ and ESAC take a single RGB image as input
and output a translation vector and quaternion of each image.
We convert this into a 4x4 pose matrix that can then be
used for further analysis and visualization. To visualize the
results, we use a 3D SfM model of the stadium in combination
with the pose matrix to overlay the 3D data onto the camera
images(Figure 1).

3) Robustness and Accuracy Computation: To calculate
the robustness and accuracy of the method, we compute the
reprojection error for each image. In order to compute the
reprojection error we need ground truth. As this is difficult to
obtain for mobile phone sequences that replicate the behavior
of a stationary user within a stadium, we manually create
ground truth by selecting 3D reference points Pr from the
SfM 3D model (SfM model) and manually selecting the
corresponding 2D points pa in each of the camera images. We
then reproject the selected 3D reference points into the camera
image pr by using the camera’s intrinsic calibration and
computed pose information. We then calculate the reprojection
error as the Euclidean distance between the reprojected 3D
references points pr and the corresponding 2D references
points pa. We also compute the localization success by taking
a threshold of 1.5% reprojection error in vertical resolution.
All results that show a higher reprojection error than 1.5% are
considered to be not successfully localized. We compute the
average reprojection error and success rate for each method
individually on crowded, semi-crowded, and empty stadium
images. Figure 2 shows the 3D model and 3D points picked
in the different locations, and Figure 3 shows the annotated
2D points in the crowded, semi-crowded and empty test data.

V. RESULTS

We performed testing of our datasets with DSAC++, ESAC
(four experts), and ESAC (ten experts) and compare the results
of the experiments. Our results are shown in Figure 6 and
Table III, measuring the mean reprojection error and standard
deviation for each localization method for each dataset. The
results show that the robustness and accuracy of DSAC++
(One expert) decreases in the more crowded environment
(mean=22.38 and success rate 75% for the semi-crowded,
and a mean=623.34 pixel, success rate 0% for the crowded
data). However, ESAC trained with four (mean=16.92 pixel)
and ten experts (mean = 11.63) performs better in crowded
stadium environments. Comparatively, the ESAC method with
a large number of experts has a smaller reprojection error and
higher success rate as shown in Figure 4. We also compute
the average computation times of DSAC++ and ESAC (Table
II) which ranges from 0.15 seconds for DSAC++ and 0.25
seconds for ESAC with four experts to 1.18 seconds for ESAC
with ten experts for the crowded images. These timings can be
considered as sufficient as they would still allow for relatively
immediate localization.

VI. CONCLUSION AND FUTURE WORK

In this work, we conducted feasibility testing of different
state-of-the-art methods for AR localization in a large dynamic
stadium environment. In particular, we trained three different
systems (DSAC++ and ESAC with four and ten experts) and
investigated the robustness and accuracy for different levels
of crowdedness in an empty, a semi-crowded, and a crowded
stadium environment on camera images and mobile phone
input. For this purpose, we calculate reprojection errors and
the success rate for each dataset. In addition, we provide
qualitative results by visualizing the results and overlaying
the 3D point cloud model onto camera images using the
computed pose data (Figure 6). Comparing all three methods,
we conclude that ESAC trained with ten experts has lower
mean projection error and higher success rates compared to
one and four experts. However, this comes with a higher



Fig. 6. Visualization of 3D point cloud overlaid onto a camera image (from the crowded dataset) using the computed camera pose. Left: Visualization
using camera pose computed by one expert. This image is considered to be not correctly localized with an average reprojection error above 500pixel. Right:
Visualization using camera pose computed by ten experts. This image is considered to be correctly localized with an average reprojection error of 8.9 pixel.

cost of training time as well as computation time. Training
a network for over a week can be challenging, a compromise
might be to use a system with four experts that has a slightly
lower accuracy, but still shows an acceptable robustness. The
system with four experts provides average accuracies around
17 pixels (below 1% for the vertical resolution). Depending on
the content to be shown this can still be sufficient for a good
AR user experience. Similarly, computation times of around
70ms for ten experts can be reduced to around 40ms by using
four experts. Conclusively, DSAC++ struggles to localize in a
crowded environment due to the fact that only one uses one
expert for training therefore, for a large dynamic environment,
it completely struggles to localize. However, on the other
hand, ESAC can be trained with a large number of experts
which in turn divides the large environment into several small
environments therefore it works better in a large environment.

For future work, we plan to run an on-site feasibility study
with the trained system. For this purpose, we are planing
to fully integrate our trained networks in a client-server
infrastructure. Our AR application can then directly connect
and localize itself. Combining this with real-time tracking
will allow us to investigate the potential of AR spectating
applications more in detail.
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